Properties

Label 4-13e4-1.1-c3e2-0-14
Degree $4$
Conductor $28561$
Sign $1$
Analytic cond. $99.4272$
Root an. cond. $3.15774$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3-s + 8·4-s + 18·5-s + 3·6-s + 15·7-s + 45·8-s + 27·9-s + 54·10-s − 48·11-s + 8·12-s + 45·14-s + 18·15-s + 135·16-s − 45·17-s + 81·18-s + 6·19-s + 144·20-s + 15·21-s − 144·22-s + 162·23-s + 45·24-s − 7·25-s + 80·27-s + 120·28-s + 144·29-s + 54·30-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.192·3-s + 4-s + 1.60·5-s + 0.204·6-s + 0.809·7-s + 1.98·8-s + 9-s + 1.70·10-s − 1.31·11-s + 0.192·12-s + 0.859·14-s + 0.309·15-s + 2.10·16-s − 0.642·17-s + 1.06·18-s + 0.0724·19-s + 1.60·20-s + 0.155·21-s − 1.39·22-s + 1.46·23-s + 0.382·24-s − 0.0559·25-s + 0.570·27-s + 0.809·28-s + 0.922·29-s + 0.328·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28561 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28561 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28561\)    =    \(13^{4}\)
Sign: $1$
Analytic conductor: \(99.4272\)
Root analytic conductor: \(3.15774\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28561,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(8.668571982\)
\(L(\frac12)\) \(\approx\) \(8.668571982\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13 \( 1 \)
good2$C_2^2$ \( 1 - 3 T + T^{2} - 3 p^{3} T^{3} + p^{6} T^{4} \)
3$C_2^2$ \( 1 - T - 26 T^{2} - p^{3} T^{3} + p^{6} T^{4} \)
5$C_2$ \( ( 1 - 9 T + p^{3} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 15 T - 118 T^{2} - 15 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 48 T + 973 T^{2} + 48 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 45 T - 2888 T^{2} + 45 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 6 T - 6823 T^{2} - 6 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 162 T + 14077 T^{2} - 162 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 144 T - 3653 T^{2} - 144 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2$ \( ( 1 + 264 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 303 T + 41156 T^{2} - 303 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2^2$ \( 1 + 192 T - 32057 T^{2} + 192 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 97 T - 70098 T^{2} + 97 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2$ \( ( 1 + 111 T + p^{3} T^{2} )^{2} \)
53$C_2$ \( ( 1 + 414 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 522 T + 67105 T^{2} - 522 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 376 T - 85605 T^{2} + 376 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 36 T - 299467 T^{2} + 36 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2^2$ \( 1 - 357 T - 230462 T^{2} - 357 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2$ \( ( 1 - 1098 T + p^{3} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 830 T + p^{3} T^{2} )^{2} \)
83$C_2$ \( ( 1 - 438 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 438 T - 513125 T^{2} + 438 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2^2$ \( 1 + 852 T - 186769 T^{2} + 852 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92487119540339450340492987261, −12.47259931478440672729935467258, −11.29348665428651674032558524778, −11.20313200688309415802299414380, −10.43771616252056851052498659990, −10.43738266414971282517613535820, −9.524219806816720275674790216895, −9.349411837209277659567710821598, −8.064598284809918988221014225353, −8.015684715030602850584627632272, −7.04488498164483413830637290130, −6.92687609042333629458542081528, −5.96501195074212143960431944610, −5.33092867123098025423446717616, −5.00639281579602082986976583571, −4.47658821698324116922812953695, −3.59369818419417596579196041306, −2.51438284265894140932485283231, −1.92183126292732341878283082749, −1.38404265891327798468734801706, 1.38404265891327798468734801706, 1.92183126292732341878283082749, 2.51438284265894140932485283231, 3.59369818419417596579196041306, 4.47658821698324116922812953695, 5.00639281579602082986976583571, 5.33092867123098025423446717616, 5.96501195074212143960431944610, 6.92687609042333629458542081528, 7.04488498164483413830637290130, 8.015684715030602850584627632272, 8.064598284809918988221014225353, 9.349411837209277659567710821598, 9.524219806816720275674790216895, 10.43738266414971282517613535820, 10.43771616252056851052498659990, 11.20313200688309415802299414380, 11.29348665428651674032558524778, 12.47259931478440672729935467258, 12.92487119540339450340492987261

Graph of the $Z$-function along the critical line