Properties

Label 4-13e4-1.1-c1e2-0-2
Degree $4$
Conductor $28561$
Sign $1$
Analytic cond. $1.82107$
Root an. cond. $1.16166$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 4-s + 6·9-s − 4·12-s − 3·16-s + 6·17-s + 12·23-s − 7·25-s − 4·27-s + 6·29-s − 6·36-s − 16·43-s − 12·48-s − 14·49-s + 24·51-s − 6·53-s + 2·61-s + 7·64-s − 6·68-s + 48·69-s − 28·75-s + 8·79-s − 37·81-s + 24·87-s − 12·92-s + 7·100-s + 6·101-s + ⋯
L(s)  = 1  + 2.30·3-s − 1/2·4-s + 2·9-s − 1.15·12-s − 3/4·16-s + 1.45·17-s + 2.50·23-s − 7/5·25-s − 0.769·27-s + 1.11·29-s − 36-s − 2.43·43-s − 1.73·48-s − 2·49-s + 3.36·51-s − 0.824·53-s + 0.256·61-s + 7/8·64-s − 0.727·68-s + 5.77·69-s − 3.23·75-s + 0.900·79-s − 4.11·81-s + 2.57·87-s − 1.25·92-s + 7/10·100-s + 0.597·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28561 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28561 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28561\)    =    \(13^{4}\)
Sign: $1$
Analytic conductor: \(1.82107\)
Root analytic conductor: \(1.16166\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28561,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.192354221\)
\(L(\frac12)\) \(\approx\) \(2.192354221\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13 \( 1 \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 122 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 143 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 146 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07149786603394019910645113250, −13.01691530904888451970608007968, −12.10428909567156302227165433234, −11.52515822423401509812583099945, −11.14539112755922504548065381680, −10.23881727093134391009984706507, −9.588508745175309869068694658006, −9.583699780833544324547587888885, −8.800662547309621166921013579389, −8.570433187924127333695662515918, −7.999777026071579701241342315621, −7.67417888996219458142284438536, −6.94378083482087772843213542582, −6.25212296055730274651740416579, −5.21823114907427806413664401822, −4.78131403405986186599823458706, −3.70663433293556063675801468526, −3.26403351690720069103565525424, −2.76455864231181104038401891600, −1.71909036867686537100924621887, 1.71909036867686537100924621887, 2.76455864231181104038401891600, 3.26403351690720069103565525424, 3.70663433293556063675801468526, 4.78131403405986186599823458706, 5.21823114907427806413664401822, 6.25212296055730274651740416579, 6.94378083482087772843213542582, 7.67417888996219458142284438536, 7.999777026071579701241342315621, 8.570433187924127333695662515918, 8.800662547309621166921013579389, 9.583699780833544324547587888885, 9.588508745175309869068694658006, 10.23881727093134391009984706507, 11.14539112755922504548065381680, 11.52515822423401509812583099945, 12.10428909567156302227165433234, 13.01691530904888451970608007968, 13.07149786603394019910645113250

Graph of the $Z$-function along the critical line