Properties

Label 8-1680e4-1.1-c1e4-0-11
Degree $8$
Conductor $7.966\times 10^{12}$
Sign $1$
Analytic cond. $32385.1$
Root an. cond. $3.66263$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 4·7-s + 6·9-s + 16·13-s − 16·21-s + 2·25-s + 4·27-s − 64·39-s − 2·49-s + 24·63-s − 32·73-s − 8·75-s − 32·79-s − 37·81-s + 64·91-s − 32·97-s − 40·103-s − 40·109-s + 96·117-s + 28·121-s + 127-s + 131-s + 137-s + 139-s + 8·147-s + 149-s + 151-s + ⋯
L(s)  = 1  − 2.30·3-s + 1.51·7-s + 2·9-s + 4.43·13-s − 3.49·21-s + 2/5·25-s + 0.769·27-s − 10.2·39-s − 2/7·49-s + 3.02·63-s − 3.74·73-s − 0.923·75-s − 3.60·79-s − 4.11·81-s + 6.70·91-s − 3.24·97-s − 3.94·103-s − 3.83·109-s + 8.87·117-s + 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.659·147-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(32385.1\)
Root analytic conductor: \(3.66263\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.501241946\)
\(L(\frac12)\) \(\approx\) \(1.501241946\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
good11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 62 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
83$C_2$ \( ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2} \)
89$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.63844157156451038617884054003, −6.35144895167287782233063438713, −6.16508960360217832343007898580, −5.86719616877824092674159644256, −5.82056735183562409944732391328, −5.66917371693870402910452968101, −5.57554421801130637442910554631, −5.17124065935850563394472220571, −5.02400551700898637918425369742, −4.80859884553317516933557605745, −4.54094572583977094282012943181, −4.18604653068758034872309553944, −4.03232827394358621798409958550, −3.93835278529017192382981231900, −3.79201205800946477740482840659, −3.22412714298363682565510952801, −2.84270818125192484025098966162, −2.77954387174995072395431218013, −2.73402507758405591985094099117, −1.57356564596574809741445957369, −1.53594362494527762656225120554, −1.46572922768665464353829004887, −1.39875847841893684697161315665, −0.78101735804922216981723828745, −0.31977115304105134625154788386, 0.31977115304105134625154788386, 0.78101735804922216981723828745, 1.39875847841893684697161315665, 1.46572922768665464353829004887, 1.53594362494527762656225120554, 1.57356564596574809741445957369, 2.73402507758405591985094099117, 2.77954387174995072395431218013, 2.84270818125192484025098966162, 3.22412714298363682565510952801, 3.79201205800946477740482840659, 3.93835278529017192382981231900, 4.03232827394358621798409958550, 4.18604653068758034872309553944, 4.54094572583977094282012943181, 4.80859884553317516933557605745, 5.02400551700898637918425369742, 5.17124065935850563394472220571, 5.57554421801130637442910554631, 5.66917371693870402910452968101, 5.82056735183562409944732391328, 5.86719616877824092674159644256, 6.16508960360217832343007898580, 6.35144895167287782233063438713, 6.63844157156451038617884054003

Graph of the $Z$-function along the critical line