Properties

Label 4-1680e2-1.1-c1e2-0-27
Degree $4$
Conductor $2822400$
Sign $1$
Analytic cond. $179.958$
Root an. cond. $3.66263$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 2·5-s − 4·7-s + 6·9-s − 6·15-s − 6·17-s + 12·21-s + 3·25-s − 9·27-s − 8·35-s − 16·37-s − 12·41-s − 20·43-s + 12·45-s + 6·47-s + 9·49-s + 18·51-s + 12·59-s − 24·63-s − 4·67-s − 9·75-s + 26·79-s + 9·81-s − 24·83-s − 12·85-s − 36·101-s + 24·105-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.894·5-s − 1.51·7-s + 2·9-s − 1.54·15-s − 1.45·17-s + 2.61·21-s + 3/5·25-s − 1.73·27-s − 1.35·35-s − 2.63·37-s − 1.87·41-s − 3.04·43-s + 1.78·45-s + 0.875·47-s + 9/7·49-s + 2.52·51-s + 1.56·59-s − 3.02·63-s − 0.488·67-s − 1.03·75-s + 2.92·79-s + 81-s − 2.63·83-s − 1.30·85-s − 3.58·101-s + 2.34·105-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2822400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2822400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2822400\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(179.958\)
Root analytic conductor: \(3.66263\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2822400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p T^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good11$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 191 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.207335126577778234210436754797, −8.950341252529072309023142958660, −8.372212101040544387181389916528, −8.108819092954677713681880381354, −6.98663804602602396455899831436, −6.91949328359894455700780586332, −6.71102416352581825356665247875, −6.55630002074594847566235363337, −5.80172468740145864564357145507, −5.60437374517150491310183642870, −5.02307140227628708843292456111, −4.97230491107338122693678167620, −4.15566336632912677072328438588, −3.68157062070953272309657341271, −3.22328748958980064535225211317, −2.49598435586195513805787709841, −1.83926102115938740426825491224, −1.31473898481767415083221791176, 0, 0, 1.31473898481767415083221791176, 1.83926102115938740426825491224, 2.49598435586195513805787709841, 3.22328748958980064535225211317, 3.68157062070953272309657341271, 4.15566336632912677072328438588, 4.97230491107338122693678167620, 5.02307140227628708843292456111, 5.60437374517150491310183642870, 5.80172468740145864564357145507, 6.55630002074594847566235363337, 6.71102416352581825356665247875, 6.91949328359894455700780586332, 6.98663804602602396455899831436, 8.108819092954677713681880381354, 8.372212101040544387181389916528, 8.950341252529072309023142958660, 9.207335126577778234210436754797

Graph of the $Z$-function along the critical line