Properties

Degree 2
Conductor $ 2^{4} \cdot 3 \cdot 5 \cdot 7 $
Sign $0.0148 - 0.999i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)3-s + (1.50 + 1.65i)5-s + (−1.46 − 2.20i)7-s − 1.00i·9-s + 1.46·11-s + (−0.887 + 0.887i)13-s + (−2.23 − 0.103i)15-s + (2.10 + 2.10i)17-s − 3.95·19-s + (2.59 + 0.526i)21-s + (4.13 + 4.13i)23-s + (−0.462 + 4.97i)25-s + (0.707 + 0.707i)27-s − 5.18i·29-s + 6.10i·31-s + ⋯
L(s)  = 1  + (−0.408 + 0.408i)3-s + (0.673 + 0.739i)5-s + (−0.552 − 0.833i)7-s − 0.333i·9-s + 0.441·11-s + (−0.246 + 0.246i)13-s + (−0.576 − 0.0267i)15-s + (0.510 + 0.510i)17-s − 0.908·19-s + (0.565 + 0.114i)21-s + (0.861 + 0.861i)23-s + (−0.0925 + 0.995i)25-s + (0.136 + 0.136i)27-s − 0.962i·29-s + 1.09i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0148 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0148 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(1680\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $0.0148 - 0.999i$
motivic weight  =  \(1\)
character  :  $\chi_{1680} (433, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 1680,\ (\ :1/2),\ 0.0148 - 0.999i)\)
\(L(1)\)  \(\approx\)  \(1.393739289\)
\(L(\frac12)\)  \(\approx\)  \(1.393739289\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.707 - 0.707i)T \)
5 \( 1 + (-1.50 - 1.65i)T \)
7 \( 1 + (1.46 + 2.20i)T \)
good11 \( 1 - 1.46T + 11T^{2} \)
13 \( 1 + (0.887 - 0.887i)T - 13iT^{2} \)
17 \( 1 + (-2.10 - 2.10i)T + 17iT^{2} \)
19 \( 1 + 3.95T + 19T^{2} \)
23 \( 1 + (-4.13 - 4.13i)T + 23iT^{2} \)
29 \( 1 + 5.18iT - 29T^{2} \)
31 \( 1 - 6.10iT - 31T^{2} \)
37 \( 1 + (-2.25 + 2.25i)T - 37iT^{2} \)
41 \( 1 - 0.769iT - 41T^{2} \)
43 \( 1 + (-5.18 - 5.18i)T + 43iT^{2} \)
47 \( 1 + (-8.57 - 8.57i)T + 47iT^{2} \)
53 \( 1 + (0.544 + 0.544i)T + 53iT^{2} \)
59 \( 1 + 3.19T + 59T^{2} \)
61 \( 1 - 1.42iT - 61T^{2} \)
67 \( 1 + (-5.93 + 5.93i)T - 67iT^{2} \)
71 \( 1 + 7.62T + 71T^{2} \)
73 \( 1 + (6.81 - 6.81i)T - 73iT^{2} \)
79 \( 1 - 4.52iT - 79T^{2} \)
83 \( 1 + (6.75 - 6.75i)T - 83iT^{2} \)
89 \( 1 + 1.19T + 89T^{2} \)
97 \( 1 + (-8.68 - 8.68i)T + 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.600474900177666811182598874055, −9.103307121797695387810724469154, −7.78865469921502258813511321737, −6.99521649554311056444267525193, −6.32556576270231518929243135863, −5.66399727525941968857409951002, −4.47777819347569443335241552351, −3.68341829040661440103535146287, −2.70796874660614973219542830398, −1.26477119409214139475181535331, 0.60656275943648619892643756376, 1.96434009582384106667069021105, 2.88283467110879969576129159408, 4.31698048405899114618072228679, 5.25553827692199842437991001425, 5.88010937993985490376892305662, 6.59628222705828091825042508518, 7.47799993034539751437471594221, 8.687625501605885247321907220873, 8.957649302556826800516350635934

Graph of the $Z$-function along the critical line