Properties

Label 8-168e4-1.1-c1e4-0-5
Degree $8$
Conductor $796594176$
Sign $1$
Analytic cond. $3.23851$
Root an. cond. $1.15822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 2·4-s − 8·7-s + 6·9-s + 8·12-s − 8·13-s + 16·19-s − 32·21-s + 16·25-s − 4·27-s − 16·28-s + 12·36-s − 32·39-s + 34·49-s − 16·52-s + 64·57-s + 40·61-s − 48·63-s − 8·64-s + 64·75-s + 32·76-s + 32·79-s − 37·81-s − 64·84-s + 64·91-s + 32·100-s − 8·108-s + ⋯
L(s)  = 1  + 2.30·3-s + 4-s − 3.02·7-s + 2·9-s + 2.30·12-s − 2.21·13-s + 3.67·19-s − 6.98·21-s + 16/5·25-s − 0.769·27-s − 3.02·28-s + 2·36-s − 5.12·39-s + 34/7·49-s − 2.21·52-s + 8.47·57-s + 5.12·61-s − 6.04·63-s − 64-s + 7.39·75-s + 3.67·76-s + 3.60·79-s − 4.11·81-s − 6.98·84-s + 6.70·91-s + 16/5·100-s − 0.769·108-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3.23851\)
Root analytic conductor: \(1.15822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.543274576\)
\(L(\frac12)\) \(\approx\) \(2.543274576\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
71$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 124 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.228128192726993745966332214796, −9.176654591269148900012949611976, −9.163532332900421735715782390263, −8.731822711244444371767968159318, −8.205088192316876085636137458578, −8.110675502425022742908573129188, −7.61488125754655462796501116452, −7.30751051246633701970792744583, −7.29874322824967643759055039025, −7.08140929354083034200814023059, −6.56605561701785345537505526240, −6.53683517156225562797071974637, −6.30682349472081109387819837861, −5.37419154995384350458999495620, −5.32668073147634338698634020785, −5.26794249345049940889028434929, −4.68324490104985024585615052636, −3.75897831318437310597711497343, −3.71014308584302199155787165860, −3.39157678668300922816589119719, −3.01008435776676640178231297580, −2.67273148817510130623183120037, −2.57929940716044093213498160435, −2.33713640408367498360285531025, −1.00485030685704020045278654916, 1.00485030685704020045278654916, 2.33713640408367498360285531025, 2.57929940716044093213498160435, 2.67273148817510130623183120037, 3.01008435776676640178231297580, 3.39157678668300922816589119719, 3.71014308584302199155787165860, 3.75897831318437310597711497343, 4.68324490104985024585615052636, 5.26794249345049940889028434929, 5.32668073147634338698634020785, 5.37419154995384350458999495620, 6.30682349472081109387819837861, 6.53683517156225562797071974637, 6.56605561701785345537505526240, 7.08140929354083034200814023059, 7.29874322824967643759055039025, 7.30751051246633701970792744583, 7.61488125754655462796501116452, 8.110675502425022742908573129188, 8.205088192316876085636137458578, 8.731822711244444371767968159318, 9.163532332900421735715782390263, 9.176654591269148900012949611976, 9.228128192726993745966332214796

Graph of the $Z$-function along the critical line