Properties

Label 8-1672e4-1.1-c1e4-0-2
Degree $8$
Conductor $7.815\times 10^{12}$
Sign $1$
Analytic cond. $31772.6$
Root an. cond. $3.65390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 3·7-s − 5·9-s + 4·11-s − 5·13-s + 3·15-s + 4·19-s + 3·21-s − 8·23-s − 7·25-s + 9·27-s − 29-s − 7·31-s − 4·33-s + 9·35-s − 16·37-s + 5·39-s − 7·41-s + 5·43-s + 15·45-s − 4·47-s − 16·49-s − 18·53-s − 12·55-s − 4·57-s − 6·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 1.13·7-s − 5/3·9-s + 1.20·11-s − 1.38·13-s + 0.774·15-s + 0.917·19-s + 0.654·21-s − 1.66·23-s − 7/5·25-s + 1.73·27-s − 0.185·29-s − 1.25·31-s − 0.696·33-s + 1.52·35-s − 2.63·37-s + 0.800·39-s − 1.09·41-s + 0.762·43-s + 2.23·45-s − 0.583·47-s − 2.28·49-s − 2.47·53-s − 1.61·55-s − 0.529·57-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 11^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 11^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 11^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(31772.6\)
Root analytic conductor: \(3.65390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 2^{12} \cdot 11^{4} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( ( 1 - T )^{4} \)
19$C_1$ \( ( 1 - T )^{4} \)
good3$C_2 \wr S_4$ \( 1 + T + 2 p T^{2} + 2 T^{3} + 19 T^{4} + 2 p T^{5} + 2 p^{3} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
5$C_2 \wr S_4$ \( 1 + 3 T + 16 T^{2} + 36 T^{3} + 23 p T^{4} + 36 p T^{5} + 16 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 3 T + 25 T^{2} + 59 T^{3} + 254 T^{4} + 59 p T^{5} + 25 p^{2} T^{6} + 3 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2 \wr S_4$ \( 1 + 5 T + 29 T^{2} + 7 p T^{3} + 322 T^{4} + 7 p^{2} T^{5} + 29 p^{2} T^{6} + 5 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2 \wr S_4$ \( 1 + 30 T^{2} + 36 T^{3} + 642 T^{4} + 36 p T^{5} + 30 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 8 T + 85 T^{2} + 382 T^{3} + 2536 T^{4} + 382 p T^{5} + 85 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
29$C_2 \wr S_4$ \( 1 + T + 101 T^{2} + 51 T^{3} + 4154 T^{4} + 51 p T^{5} + 101 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
31$C_2 \wr S_4$ \( 1 + 7 T + 118 T^{2} + 650 T^{3} + 5395 T^{4} + 650 p T^{5} + 118 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 16 T + 221 T^{2} + 1896 T^{3} + 13680 T^{4} + 1896 p T^{5} + 221 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 7 T + 99 T^{2} + 381 T^{3} + 4244 T^{4} + 381 p T^{5} + 99 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 5 T + 153 T^{2} - 637 T^{3} + 9464 T^{4} - 637 p T^{5} + 153 p^{2} T^{6} - 5 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2 \wr S_4$ \( 1 + 4 T + 76 T^{2} + 356 T^{3} + 4822 T^{4} + 356 p T^{5} + 76 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 18 T + 304 T^{2} + 2958 T^{3} + 26542 T^{4} + 2958 p T^{5} + 304 p^{2} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 213 T^{2} + 48 T^{3} + 18156 T^{4} + 48 p T^{5} + 213 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 6 T + 106 T^{2} + 746 T^{3} + 10106 T^{4} + 746 p T^{5} + 106 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2 \wr S_4$ \( 1 - T + 188 T^{2} + 34 T^{3} + 16225 T^{4} + 34 p T^{5} + 188 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} \)
71$C_2 \wr S_4$ \( 1 + T + 48 T^{2} + 306 T^{3} - 2731 T^{4} + 306 p T^{5} + 48 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 6 T + 176 T^{2} + 1186 T^{3} + 15006 T^{4} + 1186 p T^{5} + 176 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 4 T + 238 T^{2} + 680 T^{3} + 24922 T^{4} + 680 p T^{5} + 238 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 25 T + 433 T^{2} + 5021 T^{3} + 50710 T^{4} + 5021 p T^{5} + 433 p^{2} T^{6} + 25 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 14 T + 341 T^{2} + 3364 T^{3} + 45484 T^{4} + 3364 p T^{5} + 341 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
97$C_2 \wr S_4$ \( 1 + 36 T + 841 T^{2} + 12772 T^{3} + 148064 T^{4} + 12772 p T^{5} + 841 p^{2} T^{6} + 36 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.04846817642721791858879903581, −6.81195553704580019159634641423, −6.56134257597311818242291771019, −6.46206992226591274784747442136, −6.46112693009965239145093662139, −5.83407278707771307186869884156, −5.74899704519512847340935152783, −5.64328141664556713788591077862, −5.62537591393104833408328597070, −5.09134518728388143192534876166, −4.93489819823823420321878868199, −4.82085606868484602813020469860, −4.38515826422938212282941004148, −4.22931858640743864961063360871, −3.84807524841410430835068830259, −3.72670884969167580541029397414, −3.65761912716795085031796606495, −3.20638024364131725292969515454, −3.05155868206136555865478313723, −2.79412620124439300736360213500, −2.75051186617291565473882636994, −2.00958883567972918932124564704, −1.85458376936106853682358454710, −1.47479329015300976212092996691, −1.31744637655752479087987762563, 0, 0, 0, 0, 1.31744637655752479087987762563, 1.47479329015300976212092996691, 1.85458376936106853682358454710, 2.00958883567972918932124564704, 2.75051186617291565473882636994, 2.79412620124439300736360213500, 3.05155868206136555865478313723, 3.20638024364131725292969515454, 3.65761912716795085031796606495, 3.72670884969167580541029397414, 3.84807524841410430835068830259, 4.22931858640743864961063360871, 4.38515826422938212282941004148, 4.82085606868484602813020469860, 4.93489819823823420321878868199, 5.09134518728388143192534876166, 5.62537591393104833408328597070, 5.64328141664556713788591077862, 5.74899704519512847340935152783, 5.83407278707771307186869884156, 6.46112693009965239145093662139, 6.46206992226591274784747442136, 6.56134257597311818242291771019, 6.81195553704580019159634641423, 7.04846817642721791858879903581

Graph of the $Z$-function along the critical line