Properties

Label 4-162e2-1.1-c3e2-0-9
Degree $4$
Conductor $26244$
Sign $1$
Analytic cond. $91.3612$
Root an. cond. $3.09165$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 12·4-s + 9·5-s + 19·7-s + 32·8-s + 36·10-s + 24·11-s + 61·13-s + 76·14-s + 80·16-s − 3·17-s + 133·19-s + 108·20-s + 96·22-s − 69·23-s + 47·25-s + 244·26-s + 228·28-s − 237·29-s + 211·31-s + 192·32-s − 12·34-s + 171·35-s + 262·37-s + 532·38-s + 288·40-s − 468·41-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 0.804·5-s + 1.02·7-s + 1.41·8-s + 1.13·10-s + 0.657·11-s + 1.30·13-s + 1.45·14-s + 5/4·16-s − 0.0428·17-s + 1.60·19-s + 1.20·20-s + 0.930·22-s − 0.625·23-s + 0.375·25-s + 1.84·26-s + 1.53·28-s − 1.51·29-s + 1.22·31-s + 1.06·32-s − 0.0605·34-s + 0.825·35-s + 1.16·37-s + 2.27·38-s + 1.13·40-s − 1.78·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26244\)    =    \(2^{2} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(91.3612\)
Root analytic conductor: \(3.09165\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 26244,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(8.766572861\)
\(L(\frac12)\) \(\approx\) \(8.766572861\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p T )^{2} \)
3 \( 1 \)
good5$D_{4}$ \( 1 - 9 T + 34 T^{2} - 9 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 19 T + 540 T^{2} - 19 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 24 T + 1861 T^{2} - 24 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 61 T + 5088 T^{2} - 61 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 3 T + 9592 T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 7 p T + 12234 T^{2} - 7 p^{4} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 3 p T + 25288 T^{2} + 3 p^{4} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 237 T + 51244 T^{2} + 237 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 211 T + 68586 T^{2} - 211 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 262 T + 72162 T^{2} - 262 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 468 T + 191653 T^{2} + 468 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 2 p T + 24783 T^{2} + 2 p^{4} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 483 T + 212812 T^{2} + 483 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 150 T + 257074 T^{2} + 150 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 168 T + 416869 T^{2} + 168 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 1049 T + 675906 T^{2} + 1049 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 1166 T + 907395 T^{2} + 1166 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 312 T + 498238 T^{2} - 312 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 311 T + 698028 T^{2} + 311 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 349 T + 976602 T^{2} - 349 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1221 T + 1412098 T^{2} + 1221 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 492 T + 1092454 T^{2} - 492 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 128 T + 1715097 T^{2} + 128 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86193395405478908583846154276, −11.99014623246282991841007437024, −11.74079511605902335600045930587, −11.42072697883217814226210986080, −10.84422874897085128972421068478, −10.33610202205239892002473890421, −9.604497963808181260243034377935, −9.252689686930681629740162265249, −8.295352048796842345401238760521, −7.976166263009545346813965462813, −7.24623132831468950604676318424, −6.56542404486668705066529229283, −5.97557494236137692992582273031, −5.69740618513563164423064690680, −4.83020451228871719287706149927, −4.49360555502426044675850688433, −3.50611129512452170337854355701, −3.04537032240315496925935053444, −1.70914247085788237108016117633, −1.43781608275696981042008320935, 1.43781608275696981042008320935, 1.70914247085788237108016117633, 3.04537032240315496925935053444, 3.50611129512452170337854355701, 4.49360555502426044675850688433, 4.83020451228871719287706149927, 5.69740618513563164423064690680, 5.97557494236137692992582273031, 6.56542404486668705066529229283, 7.24623132831468950604676318424, 7.976166263009545346813965462813, 8.295352048796842345401238760521, 9.252689686930681629740162265249, 9.604497963808181260243034377935, 10.33610202205239892002473890421, 10.84422874897085128972421068478, 11.42072697883217814226210986080, 11.74079511605902335600045930587, 11.99014623246282991841007437024, 12.86193395405478908583846154276

Graph of the $Z$-function along the critical line