Properties

Label 2-162-27.20-c2-0-3
Degree $2$
Conductor $162$
Sign $0.639 - 0.769i$
Analytic cond. $4.41418$
Root an. cond. $2.10099$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.483 + 1.32i)2-s + (−1.53 + 1.28i)4-s + (7.71 − 1.35i)5-s + (−0.690 − 0.579i)7-s + (−2.44 − 1.41i)8-s + (5.53 + 9.59i)10-s + (15.2 + 2.68i)11-s + (−0.854 − 0.310i)13-s + (0.435 − 1.19i)14-s + (0.694 − 3.93i)16-s + (−10.6 + 6.15i)17-s + (−5.40 + 9.36i)19-s + (−10.0 + 11.9i)20-s + (3.80 + 21.5i)22-s + (21.0 + 25.1i)23-s + ⋯
L(s)  = 1  + (0.241 + 0.664i)2-s + (−0.383 + 0.321i)4-s + (1.54 − 0.271i)5-s + (−0.0986 − 0.0827i)7-s + (−0.306 − 0.176i)8-s + (0.553 + 0.959i)10-s + (1.38 + 0.244i)11-s + (−0.0657 − 0.0239i)13-s + (0.0311 − 0.0855i)14-s + (0.0434 − 0.246i)16-s + (−0.627 + 0.362i)17-s + (−0.284 + 0.492i)19-s + (−0.503 + 0.599i)20-s + (0.172 + 0.979i)22-s + (0.917 + 1.09i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.639 - 0.769i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.639 - 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $0.639 - 0.769i$
Analytic conductor: \(4.41418\)
Root analytic conductor: \(2.10099\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (143, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :1),\ 0.639 - 0.769i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.82322 + 0.855534i\)
\(L(\frac12)\) \(\approx\) \(1.82322 + 0.855534i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.483 - 1.32i)T \)
3 \( 1 \)
good5 \( 1 + (-7.71 + 1.35i)T + (23.4 - 8.55i)T^{2} \)
7 \( 1 + (0.690 + 0.579i)T + (8.50 + 48.2i)T^{2} \)
11 \( 1 + (-15.2 - 2.68i)T + (113. + 41.3i)T^{2} \)
13 \( 1 + (0.854 + 0.310i)T + (129. + 108. i)T^{2} \)
17 \( 1 + (10.6 - 6.15i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (5.40 - 9.36i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (-21.0 - 25.1i)T + (-91.8 + 520. i)T^{2} \)
29 \( 1 + (19.3 + 53.1i)T + (-644. + 540. i)T^{2} \)
31 \( 1 + (37.9 - 31.8i)T + (166. - 946. i)T^{2} \)
37 \( 1 + (17.4 + 30.2i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (-12.2 + 33.6i)T + (-1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-7.20 + 40.8i)T + (-1.73e3 - 632. i)T^{2} \)
47 \( 1 + (-15.9 + 18.9i)T + (-383. - 2.17e3i)T^{2} \)
53 \( 1 - 50.3iT - 2.80e3T^{2} \)
59 \( 1 + (65.7 - 11.5i)T + (3.27e3 - 1.19e3i)T^{2} \)
61 \( 1 + (18.7 + 15.7i)T + (646. + 3.66e3i)T^{2} \)
67 \( 1 + (61.2 + 22.3i)T + (3.43e3 + 2.88e3i)T^{2} \)
71 \( 1 + (24.4 - 14.1i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (10.7 - 18.6i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (27.2 - 9.90i)T + (4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (-0.0509 - 0.139i)T + (-5.27e3 + 4.42e3i)T^{2} \)
89 \( 1 + (-79.3 - 45.7i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (17.4 - 98.9i)T + (-8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06973938364816821787060803027, −12.03259616231448575679808758356, −10.60196151879653054873901790946, −9.376217932864011313979933842237, −8.957997199605547057652847051390, −7.25938752285206373027231549590, −6.23721652136726827101619755909, −5.40752965737242410966917942827, −3.91840860398039051927423591036, −1.81370171821695499283523299050, 1.58667715165617167554623871697, 2.97144390461470189691783090540, 4.67221611170801767535692179412, 5.99319895361685630509657294594, 6.84409446781040615467720190286, 9.018820194075245349370318968049, 9.345909024355404759764737338073, 10.60469299801443300092962252790, 11.34414038992908738062577169137, 12.68514522087641107378573429662

Graph of the $Z$-function along the critical line