L(s) = 1 | + (1.42 + 1.42i)3-s + 0.690·7-s + 1.05i·9-s + (3.06 + 3.06i)11-s + (2.33 + 2.33i)13-s − 5.28i·17-s + (5.38 − 5.38i)19-s + (0.982 + 0.982i)21-s − 1.60·23-s + (2.77 − 2.77i)27-s + (−1.70 + 1.70i)29-s + 4.69·31-s + 8.71i·33-s + (−7.89 + 7.89i)37-s + 6.65i·39-s + ⋯ |
L(s) = 1 | + (0.821 + 0.821i)3-s + 0.261·7-s + 0.350i·9-s + (0.922 + 0.922i)11-s + (0.648 + 0.648i)13-s − 1.28i·17-s + (1.23 − 1.23i)19-s + (0.214 + 0.214i)21-s − 0.335·23-s + (0.533 − 0.533i)27-s + (−0.316 + 0.316i)29-s + 0.843·31-s + 1.51i·33-s + (−1.29 + 1.29i)37-s + 1.06i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.639 - 0.768i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.639 - 0.768i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.613222616\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.613222616\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-1.42 - 1.42i)T + 3iT^{2} \) |
| 7 | \( 1 - 0.690T + 7T^{2} \) |
| 11 | \( 1 + (-3.06 - 3.06i)T + 11iT^{2} \) |
| 13 | \( 1 + (-2.33 - 2.33i)T + 13iT^{2} \) |
| 17 | \( 1 + 5.28iT - 17T^{2} \) |
| 19 | \( 1 + (-5.38 + 5.38i)T - 19iT^{2} \) |
| 23 | \( 1 + 1.60T + 23T^{2} \) |
| 29 | \( 1 + (1.70 - 1.70i)T - 29iT^{2} \) |
| 31 | \( 1 - 4.69T + 31T^{2} \) |
| 37 | \( 1 + (7.89 - 7.89i)T - 37iT^{2} \) |
| 41 | \( 1 - 5.49iT - 41T^{2} \) |
| 43 | \( 1 + (-0.256 + 0.256i)T - 43iT^{2} \) |
| 47 | \( 1 - 4.60iT - 47T^{2} \) |
| 53 | \( 1 + (4.99 - 4.99i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.46 - 1.46i)T + 59iT^{2} \) |
| 61 | \( 1 + (-9.33 + 9.33i)T - 61iT^{2} \) |
| 67 | \( 1 + (-1.94 - 1.94i)T + 67iT^{2} \) |
| 71 | \( 1 + 2.32iT - 71T^{2} \) |
| 73 | \( 1 - 1.29T + 73T^{2} \) |
| 79 | \( 1 + 5.01T + 79T^{2} \) |
| 83 | \( 1 + (-7.30 - 7.30i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.81iT - 89T^{2} \) |
| 97 | \( 1 - 5.27iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.576289659484455615517912411485, −8.931222157216745250148363159368, −8.120660683426196648828572921796, −7.06826883480157415165688458605, −6.50880431945208661410592997086, −5.01960694791978588316248282647, −4.51940789170894052250237451654, −3.53455705711978975178899775606, −2.71523018488228636481360167769, −1.33187994376919008266842007004,
1.14189389585767239296114004315, 1.98544714685674611447673436379, 3.36546188016902862410239484724, 3.82428600688340494944532348070, 5.42172776219698096746178174348, 6.08138977070642287171851452296, 7.00660816017969674552209337280, 7.962042961103865397706680468688, 8.320090779955961651496392866289, 8.999806675748423530957036016883