Properties

Label 8-40e8-1.1-c1e4-0-10
Degree $8$
Conductor $6.554\times 10^{12}$
Sign $1$
Analytic cond. $26643.3$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 4·9-s + 4·27-s + 24·31-s + 24·37-s + 24·41-s − 20·43-s + 4·49-s + 20·67-s − 24·71-s − 48·79-s − 10·81-s − 12·83-s + 24·89-s − 96·93-s − 60·107-s − 96·111-s + 20·121-s − 96·123-s + 127-s + 80·129-s + 131-s + 137-s + 139-s − 16·147-s + 149-s + 151-s + ⋯
L(s)  = 1  − 2.30·3-s + 4/3·9-s + 0.769·27-s + 4.31·31-s + 3.94·37-s + 3.74·41-s − 3.04·43-s + 4/7·49-s + 2.44·67-s − 2.84·71-s − 5.40·79-s − 1.11·81-s − 1.31·83-s + 2.54·89-s − 9.95·93-s − 5.80·107-s − 9.11·111-s + 1.81·121-s − 8.65·123-s + 0.0887·127-s + 7.04·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.31·147-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(26643.3\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7372505403\)
\(L(\frac12)\) \(\approx\) \(0.7372505403\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$D_{4}$ \( ( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 4 T^{2} - 6 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 20 T^{2} + 186 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 - 12 T + 86 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
41$D_{4}$ \( ( 1 - 12 T + 106 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 10 T + 84 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 116 T^{2} + 6810 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 76 T^{2} + 1974 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 10 T + 132 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 + 12 T + 70 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 44 T^{2} + 4230 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
83$D_{4}$ \( ( 1 + 6 T + 172 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 12 T + 166 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 140 T^{2} + 16806 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.54022699345926043927241430258, −6.30005149960429090287933652761, −6.25617107940457083617485891599, −6.05121611748413660395772210668, −5.83847237913057077148854493682, −5.76348645714371591265766943086, −5.46570457749523732557635948352, −5.31790890324813998998751405188, −5.04358314280262983916860828749, −4.74034609792205732734381498466, −4.36724675804943809310919661332, −4.35285653583575189449423578424, −4.29131285372188037807306536014, −4.13495289458410167344145611527, −3.56660631563327664133064224783, −3.10284661348298030400835026191, −2.94596198990756254493241844612, −2.70340260420984196844832641315, −2.51579777041534943932077382233, −2.42643109193513079283957715870, −1.65847103499722340426603297638, −1.28010753681688952047939959544, −1.01889646950838046798308843526, −0.72655362401117505216545844208, −0.28313718598906060654198519889, 0.28313718598906060654198519889, 0.72655362401117505216545844208, 1.01889646950838046798308843526, 1.28010753681688952047939959544, 1.65847103499722340426603297638, 2.42643109193513079283957715870, 2.51579777041534943932077382233, 2.70340260420984196844832641315, 2.94596198990756254493241844612, 3.10284661348298030400835026191, 3.56660631563327664133064224783, 4.13495289458410167344145611527, 4.29131285372188037807306536014, 4.35285653583575189449423578424, 4.36724675804943809310919661332, 4.74034609792205732734381498466, 5.04358314280262983916860828749, 5.31790890324813998998751405188, 5.46570457749523732557635948352, 5.76348645714371591265766943086, 5.83847237913057077148854493682, 6.05121611748413660395772210668, 6.25617107940457083617485891599, 6.30005149960429090287933652761, 6.54022699345926043927241430258

Graph of the $Z$-function along the critical line