Properties

Label 8-40e8-1.1-c1e4-0-3
Degree $8$
Conductor $6.554\times 10^{12}$
Sign $1$
Analytic cond. $26643.3$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 4·9-s + 4·27-s − 24·31-s − 24·37-s + 24·41-s − 20·43-s + 4·49-s + 20·67-s + 24·71-s + 48·79-s − 10·81-s − 12·83-s + 24·89-s + 96·93-s − 60·107-s + 96·111-s + 20·121-s − 96·123-s + 127-s + 80·129-s + 131-s + 137-s + 139-s − 16·147-s + 149-s + 151-s + ⋯
L(s)  = 1  − 2.30·3-s + 4/3·9-s + 0.769·27-s − 4.31·31-s − 3.94·37-s + 3.74·41-s − 3.04·43-s + 4/7·49-s + 2.44·67-s + 2.84·71-s + 5.40·79-s − 1.11·81-s − 1.31·83-s + 2.54·89-s + 9.95·93-s − 5.80·107-s + 9.11·111-s + 1.81·121-s − 8.65·123-s + 0.0887·127-s + 7.04·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.31·147-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(26643.3\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1415957176\)
\(L(\frac12)\) \(\approx\) \(0.1415957176\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$D_{4}$ \( ( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 4 T^{2} - 6 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 20 T^{2} + 186 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$D_{4}$ \( ( 1 + 12 T + 86 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
41$D_{4}$ \( ( 1 - 12 T + 106 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 10 T + 84 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 116 T^{2} + 6810 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 82 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 76 T^{2} + 1974 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 10 T + 132 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 12 T + 70 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 44 T^{2} + 4230 T^{4} - 44 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
83$D_{4}$ \( ( 1 + 6 T + 172 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 12 T + 166 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 140 T^{2} + 16806 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.69960107900960116719417169282, −6.68929986677692118510140706360, −6.13545737207515525797784285937, −6.05629870827409417482628573842, −5.62580782303062663980840493457, −5.60871129735776259200355235388, −5.52903270288770044722426606934, −5.19569184620023023857101114300, −5.03993600287336669442377053856, −4.97768922843258220212581866855, −4.87097588614781965947943590383, −4.26845184809000422698765713610, −3.83556444474130628999796501594, −3.76903046843412352088818617593, −3.61930928510390447413421861623, −3.58631853016481276828094017169, −3.11745652410939262085376224231, −2.66176257245725524621528595562, −2.39130949933524008626340830293, −1.98484866011011060993434982237, −1.81698050031540470105310980378, −1.66948858401971837384382269558, −0.870757098151957887564925037967, −0.63697300345061816541401076135, −0.13703573424083539679759682059, 0.13703573424083539679759682059, 0.63697300345061816541401076135, 0.870757098151957887564925037967, 1.66948858401971837384382269558, 1.81698050031540470105310980378, 1.98484866011011060993434982237, 2.39130949933524008626340830293, 2.66176257245725524621528595562, 3.11745652410939262085376224231, 3.58631853016481276828094017169, 3.61930928510390447413421861623, 3.76903046843412352088818617593, 3.83556444474130628999796501594, 4.26845184809000422698765713610, 4.87097588614781965947943590383, 4.97768922843258220212581866855, 5.03993600287336669442377053856, 5.19569184620023023857101114300, 5.52903270288770044722426606934, 5.60871129735776259200355235388, 5.62580782303062663980840493457, 6.05629870827409417482628573842, 6.13545737207515525797784285937, 6.68929986677692118510140706360, 6.69960107900960116719417169282

Graph of the $Z$-function along the critical line