Properties

Label 2-160-1.1-c5-0-6
Degree $2$
Conductor $160$
Sign $1$
Analytic cond. $25.6614$
Root an. cond. $5.06570$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.6·3-s + 25·5-s − 176.·7-s − 129.·9-s + 400.·11-s + 784.·13-s + 266.·15-s + 740.·17-s + 2.77e3·19-s − 1.88e3·21-s + 176.·23-s + 625·25-s − 3.97e3·27-s + 5.54e3·29-s − 5.73e3·31-s + 4.27e3·33-s − 4.42e3·35-s + 6.79e3·37-s + 8.36e3·39-s + 1.84e4·41-s + 1.40e4·43-s − 3.23e3·45-s − 2.33e4·47-s + 1.45e4·49-s + 7.90e3·51-s − 279.·53-s + 1.00e4·55-s + ⋯
L(s)  = 1  + 0.684·3-s + 0.447·5-s − 1.36·7-s − 0.531·9-s + 0.999·11-s + 1.28·13-s + 0.305·15-s + 0.621·17-s + 1.76·19-s − 0.933·21-s + 0.0697·23-s + 0.200·25-s − 1.04·27-s + 1.22·29-s − 1.07·31-s + 0.683·33-s − 0.610·35-s + 0.816·37-s + 0.881·39-s + 1.71·41-s + 1.16·43-s − 0.237·45-s − 1.54·47-s + 0.863·49-s + 0.425·51-s − 0.0136·53-s + 0.446·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(160\)    =    \(2^{5} \cdot 5\)
Sign: $1$
Analytic conductor: \(25.6614\)
Root analytic conductor: \(5.06570\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 160,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.528991044\)
\(L(\frac12)\) \(\approx\) \(2.528991044\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 25T \)
good3 \( 1 - 10.6T + 243T^{2} \)
7 \( 1 + 176.T + 1.68e4T^{2} \)
11 \( 1 - 400.T + 1.61e5T^{2} \)
13 \( 1 - 784.T + 3.71e5T^{2} \)
17 \( 1 - 740.T + 1.41e6T^{2} \)
19 \( 1 - 2.77e3T + 2.47e6T^{2} \)
23 \( 1 - 176.T + 6.43e6T^{2} \)
29 \( 1 - 5.54e3T + 2.05e7T^{2} \)
31 \( 1 + 5.73e3T + 2.86e7T^{2} \)
37 \( 1 - 6.79e3T + 6.93e7T^{2} \)
41 \( 1 - 1.84e4T + 1.15e8T^{2} \)
43 \( 1 - 1.40e4T + 1.47e8T^{2} \)
47 \( 1 + 2.33e4T + 2.29e8T^{2} \)
53 \( 1 + 279.T + 4.18e8T^{2} \)
59 \( 1 + 4.01e4T + 7.14e8T^{2} \)
61 \( 1 - 1.05e4T + 8.44e8T^{2} \)
67 \( 1 - 3.59e4T + 1.35e9T^{2} \)
71 \( 1 + 2.52e4T + 1.80e9T^{2} \)
73 \( 1 - 2.70e4T + 2.07e9T^{2} \)
79 \( 1 - 3.20e4T + 3.07e9T^{2} \)
83 \( 1 - 4.44e4T + 3.93e9T^{2} \)
89 \( 1 - 8.02e4T + 5.58e9T^{2} \)
97 \( 1 - 3.64e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07975360464770812151126621751, −10.95220219134249528393651436645, −9.489773337676562380502306665961, −9.264060079113955795403561552532, −7.913303193950932212528755545455, −6.53593447542888657198130587298, −5.71323593477514402601164881831, −3.70068791203062227374229359900, −2.91263334607638103075147555966, −1.06293573692992576253978492751, 1.06293573692992576253978492751, 2.91263334607638103075147555966, 3.70068791203062227374229359900, 5.71323593477514402601164881831, 6.53593447542888657198130587298, 7.913303193950932212528755545455, 9.264060079113955795403561552532, 9.489773337676562380502306665961, 10.95220219134249528393651436645, 12.07975360464770812151126621751

Graph of the $Z$-function along the critical line