# Properties

 Degree $2$ Conductor $16$ Sign $-0.857 - 0.515i$ Motivic weight $4$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−2.34 + 3.24i)2-s + (−4.63 + 4.63i)3-s + (−5.00 − 15.1i)4-s + (−29.2 + 29.2i)5-s + (−4.15 − 25.8i)6-s + 59.6·7-s + (60.9 + 19.3i)8-s + 38.0i·9-s + (−26.1 − 163. i)10-s + (−18.0 − 18.0i)11-s + (93.6 + 47.2i)12-s + (50.7 + 50.7i)13-s + (−139. + 193. i)14-s − 270. i·15-s + (−205. + 152. i)16-s − 223.·17-s + ⋯
 L(s)  = 1 + (−0.586 + 0.810i)2-s + (−0.515 + 0.515i)3-s + (−0.313 − 0.949i)4-s + (−1.16 + 1.16i)5-s + (−0.115 − 0.719i)6-s + 1.21·7-s + (0.953 + 0.302i)8-s + 0.469i·9-s + (−0.261 − 1.63i)10-s + (−0.149 − 0.149i)11-s + (0.650 + 0.327i)12-s + (0.300 + 0.300i)13-s + (−0.713 + 0.985i)14-s − 1.20i·15-s + (−0.803 + 0.594i)16-s − 0.774·17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.857 - 0.515i)\, \overline{\Lambda}(5-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.857 - 0.515i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$16$$    =    $$2^{4}$$ Sign: $-0.857 - 0.515i$ Motivic weight: $$4$$ Character: $\chi_{16} (3, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 16,\ (\ :2),\ -0.857 - 0.515i)$$

## Particular Values

 $$L(\frac{5}{2})$$ $$\approx$$ $$0.167025 + 0.602095i$$ $$L(\frac12)$$ $$\approx$$ $$0.167025 + 0.602095i$$ $$L(3)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (2.34 - 3.24i)T$$
good3 $$1 + (4.63 - 4.63i)T - 81iT^{2}$$
5 $$1 + (29.2 - 29.2i)T - 625iT^{2}$$
7 $$1 - 59.6T + 2.40e3T^{2}$$
11 $$1 + (18.0 + 18.0i)T + 1.46e4iT^{2}$$
13 $$1 + (-50.7 - 50.7i)T + 2.85e4iT^{2}$$
17 $$1 + 223.T + 8.35e4T^{2}$$
19 $$1 + (-14.7 + 14.7i)T - 1.30e5iT^{2}$$
23 $$1 - 739.T + 2.79e5T^{2}$$
29 $$1 + (-938. - 938. i)T + 7.07e5iT^{2}$$
31 $$1 - 938. iT - 9.23e5T^{2}$$
37 $$1 + (-263. + 263. i)T - 1.87e6iT^{2}$$
41 $$1 + 248. iT - 2.82e6T^{2}$$
43 $$1 + (-1.03e3 - 1.03e3i)T + 3.41e6iT^{2}$$
47 $$1 + 2.01e3iT - 4.87e6T^{2}$$
53 $$1 + (-833. + 833. i)T - 7.89e6iT^{2}$$
59 $$1 + (2.22e3 + 2.22e3i)T + 1.21e7iT^{2}$$
61 $$1 + (341. + 341. i)T + 1.38e7iT^{2}$$
67 $$1 + (-4.84e3 + 4.84e3i)T - 2.01e7iT^{2}$$
71 $$1 + 4.18e3T + 2.54e7T^{2}$$
73 $$1 - 9.07e3iT - 2.83e7T^{2}$$
79 $$1 + 735. iT - 3.89e7T^{2}$$
83 $$1 + (-1.44e3 + 1.44e3i)T - 4.74e7iT^{2}$$
89 $$1 - 5.07e3iT - 6.27e7T^{2}$$
97 $$1 + 2.52e3T + 8.85e7T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$