# Properties

 Degree $2$ Conductor $16$ Sign $-0.573 + 0.819i$ Motivic weight $4$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−2.97 + 2.67i)2-s + (−9.42 − 9.42i)3-s + (1.73 − 15.9i)4-s + (−2.84 − 2.84i)5-s + (53.2 + 2.90i)6-s − 76.7·7-s + (37.2 + 52.0i)8-s + 96.6i·9-s + (16.0 + 0.876i)10-s + (121. − 121. i)11-s + (−166. + 133. i)12-s + (27.1 − 27.1i)13-s + (228. − 205. i)14-s + 53.6i·15-s + (−249. − 55.2i)16-s − 88.0·17-s + ⋯
 L(s)  = 1 + (−0.744 + 0.667i)2-s + (−1.04 − 1.04i)3-s + (0.108 − 0.994i)4-s + (−0.113 − 0.113i)5-s + (1.47 + 0.0805i)6-s − 1.56·7-s + (0.582 + 0.812i)8-s + 1.19i·9-s + (0.160 + 0.00876i)10-s + (1.00 − 1.00i)11-s + (−1.15 + 0.927i)12-s + (0.160 − 0.160i)13-s + (1.16 − 1.04i)14-s + 0.238i·15-s + (−0.976 − 0.215i)16-s − 0.304·17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.573 + 0.819i)\, \overline{\Lambda}(5-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.573 + 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$16$$    =    $$2^{4}$$ Sign: $-0.573 + 0.819i$ Motivic weight: $$4$$ Character: $\chi_{16} (11, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 16,\ (\ :2),\ -0.573 + 0.819i)$$

## Particular Values

 $$L(\frac{5}{2})$$ $$\approx$$ $$0.153023 - 0.293788i$$ $$L(\frac12)$$ $$\approx$$ $$0.153023 - 0.293788i$$ $$L(3)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (2.97 - 2.67i)T$$
good3 $$1 + (9.42 + 9.42i)T + 81iT^{2}$$
5 $$1 + (2.84 + 2.84i)T + 625iT^{2}$$
7 $$1 + 76.7T + 2.40e3T^{2}$$
11 $$1 + (-121. + 121. i)T - 1.46e4iT^{2}$$
13 $$1 + (-27.1 + 27.1i)T - 2.85e4iT^{2}$$
17 $$1 + 88.0T + 8.35e4T^{2}$$
19 $$1 + (261. + 261. i)T + 1.30e5iT^{2}$$
23 $$1 - 93.4T + 2.79e5T^{2}$$
29 $$1 + (-272. + 272. i)T - 7.07e5iT^{2}$$
31 $$1 - 1.23e3iT - 9.23e5T^{2}$$
37 $$1 + (1.04e3 + 1.04e3i)T + 1.87e6iT^{2}$$
41 $$1 + 915. iT - 2.82e6T^{2}$$
43 $$1 + (-1.11e3 + 1.11e3i)T - 3.41e6iT^{2}$$
47 $$1 - 1.72e3iT - 4.87e6T^{2}$$
53 $$1 + (-734. - 734. i)T + 7.89e6iT^{2}$$
59 $$1 + (1.20e3 - 1.20e3i)T - 1.21e7iT^{2}$$
61 $$1 + (-580. + 580. i)T - 1.38e7iT^{2}$$
67 $$1 + (1.48e3 + 1.48e3i)T + 2.01e7iT^{2}$$
71 $$1 - 5.57e3T + 2.54e7T^{2}$$
73 $$1 + 6.61e3iT - 2.83e7T^{2}$$
79 $$1 + 5.39e3iT - 3.89e7T^{2}$$
83 $$1 + (2.55e3 + 2.55e3i)T + 4.74e7iT^{2}$$
89 $$1 - 1.09e4iT - 6.27e7T^{2}$$
97 $$1 - 4.71e3T + 8.85e7T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−17.77270223990790180568924083654, −16.77131495106437194003516168885, −15.85301342514478290606478918765, −13.74306542803189267521688106082, −12.33045747510064417017908147345, −10.78409429424232340969181123381, −8.930718607438399315631159596087, −6.84670409430693758411867543178, −6.08346998053478621415460806589, −0.45980600418400553558267867558, 3.93824887074054546169436152035, 6.61361030650826395055363265248, 9.370826893116514104592579016593, 10.19718361834186652619799523679, 11.58000329491176468100633440061, 12.79424773959630429985875734893, 15.41902512507524921324010746347, 16.57883045829110248387340368983, 17.24322319949097097911966314607, 18.88215812172987316227102017107