Properties

Label 4-2e8-1.1-c33e2-0-0
Degree $4$
Conductor $256$
Sign $1$
Analytic cond. $12182.0$
Root an. cond. $10.5058$
Motivic weight $33$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.79e7·3-s − 1.81e11·5-s + 6.71e13·7-s − 8.85e15·9-s − 1.33e17·11-s − 2.98e18·13-s + 6.86e18·15-s − 7.93e19·17-s + 1.36e21·19-s − 2.54e21·21-s − 2.61e22·23-s − 1.95e23·25-s + 5.14e23·27-s − 1.67e24·29-s + 6.23e24·31-s + 5.07e24·33-s − 1.21e25·35-s − 1.04e26·37-s + 1.13e26·39-s + 2.77e26·41-s − 1.56e27·43-s + 1.60e27·45-s − 5.42e27·47-s − 4.23e27·49-s + 3.00e27·51-s − 2.68e28·53-s + 2.42e28·55-s + ⋯
L(s)  = 1  − 0.508·3-s − 0.530·5-s + 0.763·7-s − 1.59·9-s − 0.878·11-s − 1.24·13-s + 0.269·15-s − 0.395·17-s + 1.08·19-s − 0.388·21-s − 0.889·23-s − 1.68·25-s + 1.24·27-s − 1.24·29-s + 1.54·31-s + 0.446·33-s − 0.405·35-s − 1.39·37-s + 0.632·39-s + 0.679·41-s − 1.74·43-s + 0.844·45-s − 1.39·47-s − 0.547·49-s + 0.201·51-s − 0.952·53-s + 0.466·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(34-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+33/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(12182.0\)
Root analytic conductor: \(10.5058\)
Motivic weight: \(33\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 256,\ (\ :33/2, 33/2),\ 1)\)

Particular Values

\(L(17)\) \(\approx\) \(0.03649727191\)
\(L(\frac12)\) \(\approx\) \(0.03649727191\)
\(L(\frac{35}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$D_{4}$ \( 1 + 1404440 p^{3} T + 522714408050 p^{9} T^{2} + 1404440 p^{36} T^{3} + p^{66} T^{4} \)
5$D_{4}$ \( 1 + 1448492292 p^{3} T + 585507855025144558 p^{8} T^{2} + 1448492292 p^{36} T^{3} + p^{66} T^{4} \)
7$D_{4}$ \( 1 - 9593297152400 p T + \)\(36\!\cdots\!50\)\( p^{4} T^{2} - 9593297152400 p^{34} T^{3} + p^{66} T^{4} \)
11$D_{4}$ \( 1 + 12170165040174024 p T + \)\(23\!\cdots\!66\)\( p^{2} T^{2} + 12170165040174024 p^{34} T^{3} + p^{66} T^{4} \)
13$D_{4}$ \( 1 + 229354652173803380 p T + \)\(61\!\cdots\!50\)\( p^{3} T^{2} + 229354652173803380 p^{34} T^{3} + p^{66} T^{4} \)
17$D_{4}$ \( 1 + 79361149261175525340 T - \)\(26\!\cdots\!50\)\( p T^{2} + 79361149261175525340 p^{33} T^{3} + p^{66} T^{4} \)
19$D_{4}$ \( 1 - \)\(13\!\cdots\!00\)\( T + \)\(17\!\cdots\!22\)\( p T^{2} - \)\(13\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} \)
23$D_{4}$ \( 1 + \)\(26\!\cdots\!40\)\( T + \)\(68\!\cdots\!50\)\( p T^{2} + \)\(26\!\cdots\!40\)\( p^{33} T^{3} + p^{66} T^{4} \)
29$D_{4}$ \( 1 + \)\(57\!\cdots\!00\)\( p T + \)\(46\!\cdots\!58\)\( p^{2} T^{2} + \)\(57\!\cdots\!00\)\( p^{34} T^{3} + p^{66} T^{4} \)
31$D_{4}$ \( 1 - \)\(20\!\cdots\!36\)\( p T + \)\(30\!\cdots\!86\)\( p^{2} T^{2} - \)\(20\!\cdots\!36\)\( p^{34} T^{3} + p^{66} T^{4} \)
37$D_{4}$ \( 1 + \)\(10\!\cdots\!20\)\( T + \)\(13\!\cdots\!50\)\( T^{2} + \)\(10\!\cdots\!20\)\( p^{33} T^{3} + p^{66} T^{4} \)
41$D_{4}$ \( 1 - \)\(27\!\cdots\!44\)\( T + \)\(22\!\cdots\!26\)\( T^{2} - \)\(27\!\cdots\!44\)\( p^{33} T^{3} + p^{66} T^{4} \)
43$D_{4}$ \( 1 + \)\(15\!\cdots\!00\)\( T + \)\(12\!\cdots\!50\)\( T^{2} + \)\(15\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} \)
47$D_{4}$ \( 1 + \)\(11\!\cdots\!20\)\( p T + \)\(37\!\cdots\!50\)\( T^{2} + \)\(11\!\cdots\!20\)\( p^{34} T^{3} + p^{66} T^{4} \)
53$D_{4}$ \( 1 + \)\(26\!\cdots\!20\)\( T + \)\(12\!\cdots\!50\)\( T^{2} + \)\(26\!\cdots\!20\)\( p^{33} T^{3} + p^{66} T^{4} \)
59$D_{4}$ \( 1 - \)\(30\!\cdots\!00\)\( T + \)\(77\!\cdots\!58\)\( T^{2} - \)\(30\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} \)
61$D_{4}$ \( 1 + \)\(57\!\cdots\!36\)\( T + \)\(16\!\cdots\!86\)\( T^{2} + \)\(57\!\cdots\!36\)\( p^{33} T^{3} + p^{66} T^{4} \)
67$D_{4}$ \( 1 + \)\(15\!\cdots\!60\)\( T + \)\(41\!\cdots\!50\)\( T^{2} + \)\(15\!\cdots\!60\)\( p^{33} T^{3} + p^{66} T^{4} \)
71$D_{4}$ \( 1 - \)\(26\!\cdots\!76\)\( T + \)\(22\!\cdots\!66\)\( T^{2} - \)\(26\!\cdots\!76\)\( p^{33} T^{3} + p^{66} T^{4} \)
73$D_{4}$ \( 1 - \)\(94\!\cdots\!40\)\( T + \)\(19\!\cdots\!50\)\( T^{2} - \)\(94\!\cdots\!40\)\( p^{33} T^{3} + p^{66} T^{4} \)
79$D_{4}$ \( 1 - \)\(85\!\cdots\!00\)\( T + \)\(85\!\cdots\!78\)\( T^{2} - \)\(85\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} \)
83$D_{4}$ \( 1 + \)\(29\!\cdots\!20\)\( T + \)\(37\!\cdots\!50\)\( T^{2} + \)\(29\!\cdots\!20\)\( p^{33} T^{3} + p^{66} T^{4} \)
89$D_{4}$ \( 1 - \)\(13\!\cdots\!00\)\( T + \)\(47\!\cdots\!38\)\( T^{2} - \)\(13\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} \)
97$D_{4}$ \( 1 + \)\(36\!\cdots\!60\)\( T + \)\(42\!\cdots\!50\)\( T^{2} + \)\(36\!\cdots\!60\)\( p^{33} T^{3} + p^{66} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.11741156293658344462034692248, −12.00513888651495600751595498413, −11.29999584220204753661098657890, −11.10773914479327891515264527690, −9.870865696969853055179130645699, −9.835709323323277353440559334502, −8.542107698709462892330623056654, −8.209860984286909586520096005948, −7.67916853481324454796199046259, −7.04161386478204239761336523495, −6.02936079225254323042517202720, −5.63762040844751398840477284084, −4.89415390986715155249161414570, −4.68285482124470133772131360789, −3.45239371718155382683723068754, −3.15343772930008076716608946691, −2.09668008381621235150357278359, −1.97335887214323248851084993514, −0.72264428829493771535027805478, −0.05698198268677698107713723635, 0.05698198268677698107713723635, 0.72264428829493771535027805478, 1.97335887214323248851084993514, 2.09668008381621235150357278359, 3.15343772930008076716608946691, 3.45239371718155382683723068754, 4.68285482124470133772131360789, 4.89415390986715155249161414570, 5.63762040844751398840477284084, 6.02936079225254323042517202720, 7.04161386478204239761336523495, 7.67916853481324454796199046259, 8.209860984286909586520096005948, 8.542107698709462892330623056654, 9.835709323323277353440559334502, 9.870865696969853055179130645699, 11.10773914479327891515264527690, 11.29999584220204753661098657890, 12.00513888651495600751595498413, 12.11741156293658344462034692248

Graph of the $Z$-function along the critical line