Properties

Degree 2
Conductor $ 2^{4} $
Sign $-0.479 - 0.877i$
Motivic weight 11
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (26.1 + 36.9i)2-s + (255. − 255. i)3-s + (−681. + 1.93e3i)4-s + (−4.21e3 − 4.21e3i)5-s + (1.61e4 + 2.76e3i)6-s + 8.03e4i·7-s + (−8.91e4 + 2.53e4i)8-s + 4.61e4i·9-s + (4.55e4 − 2.65e5i)10-s + (6.11e5 + 6.11e5i)11-s + (3.19e5 + 6.68e5i)12-s + (3.70e5 − 3.70e5i)13-s + (−2.96e6 + 2.10e6i)14-s − 2.15e6·15-s + (−3.26e6 − 2.63e6i)16-s − 7.25e5·17-s + ⋯
L(s)  = 1  + (0.577 + 0.816i)2-s + (0.608 − 0.608i)3-s + (−0.332 + 0.943i)4-s + (−0.603 − 0.603i)5-s + (0.847 + 0.145i)6-s + 1.80i·7-s + (−0.962 + 0.273i)8-s + 0.260i·9-s + (0.143 − 0.840i)10-s + (1.14 + 1.14i)11-s + (0.371 + 0.775i)12-s + (0.276 − 0.276i)13-s + (−1.47 + 1.04i)14-s − 0.733·15-s + (−0.778 − 0.627i)16-s − 0.123·17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.479 - 0.877i)\, \overline{\Lambda}(12-s) \end{aligned}\n\]
\[\begin{aligned} \Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.479 - 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\n\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(16\)    =    \(2^{4}\)
\( \varepsilon \)  =  $-0.479 - 0.877i$
motivic weight  =  \(11\)
character  :  $\chi_{16} (5, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 16,\ (\ :11/2),\ -0.479 - 0.877i)$
$L(6)$  $\approx$  $1.17979 + 1.98808i$
$L(\frac12)$  $\approx$  $1.17979 + 1.98808i$
$L(\frac{13}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \neq 2$, \(F_p(T)\) is a polynomial of degree 2. If $p = 2$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-26.1 - 36.9i)T \)
good3 \( 1 + (-255. + 255. i)T - 1.77e5iT^{2} \)
5 \( 1 + (4.21e3 + 4.21e3i)T + 4.88e7iT^{2} \)
7 \( 1 - 8.03e4iT - 1.97e9T^{2} \)
11 \( 1 + (-6.11e5 - 6.11e5i)T + 2.85e11iT^{2} \)
13 \( 1 + (-3.70e5 + 3.70e5i)T - 1.79e12iT^{2} \)
17 \( 1 + 7.25e5T + 3.42e13T^{2} \)
19 \( 1 + (1.13e7 - 1.13e7i)T - 1.16e14iT^{2} \)
23 \( 1 + 4.89e7iT - 9.52e14T^{2} \)
29 \( 1 + (-4.98e7 + 4.98e7i)T - 1.22e16iT^{2} \)
31 \( 1 - 4.20e7T + 2.54e16T^{2} \)
37 \( 1 + (1.05e8 + 1.05e8i)T + 1.77e17iT^{2} \)
41 \( 1 - 4.49e8iT - 5.50e17T^{2} \)
43 \( 1 + (-7.89e8 - 7.89e8i)T + 9.29e17iT^{2} \)
47 \( 1 - 1.32e9T + 2.47e18T^{2} \)
53 \( 1 + (-1.74e9 - 1.74e9i)T + 9.26e18iT^{2} \)
59 \( 1 + (6.71e8 + 6.71e8i)T + 3.01e19iT^{2} \)
61 \( 1 + (8.30e8 - 8.30e8i)T - 4.35e19iT^{2} \)
67 \( 1 + (-3.88e9 + 3.88e9i)T - 1.22e20iT^{2} \)
71 \( 1 + 5.14e9iT - 2.31e20T^{2} \)
73 \( 1 + 4.42e9iT - 3.13e20T^{2} \)
79 \( 1 - 2.71e10T + 7.47e20T^{2} \)
83 \( 1 + (-1.81e10 + 1.81e10i)T - 1.28e21iT^{2} \)
89 \( 1 - 5.56e10iT - 2.77e21T^{2} \)
97 \( 1 - 2.61e10T + 7.15e21T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−16.55240431816638840001165443731, −15.28499858415558438304635206660, −14.41975827228433298489690823779, −12.58301393647176931775904345293, −12.20776737883238778898568826828, −8.883945090996473560677713604247, −8.097026818645962859772334832208, −6.30307470655730899276489368010, −4.49620154337608936011067279184, −2.31996074780852540803052134706, 0.820884768682237316681174695910, 3.46523922444835153254618173959, 4.04894254031337630713953504733, 6.76991838174780158553835384101, 9.049785964032772444969918129191, 10.56895670046603763375635473994, 11.47231888927570028778616438488, 13.56725270759021088277929306558, 14.32211597569398384997272451105, 15.55586751334221486985720660579

Graph of the $Z$-function along the critical line