# Properties

 Degree 2 Conductor $2^{4}$ Sign $-0.824 + 0.566i$ Motivic weight 11 Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 + (33.6 + 30.2i)2-s + (−145. − 145. i)3-s + (214. + 2.03e3i)4-s + (−4.65e3 + 4.65e3i)5-s + (−486. − 9.27e3i)6-s − 4.32e4i·7-s + (−5.44e4 + 7.49e4i)8-s − 1.35e5i·9-s + (−2.97e5 + 1.56e4i)10-s + (−6.85e5 + 6.85e5i)11-s + (2.64e5 − 3.26e5i)12-s + (−1.40e6 − 1.40e6i)13-s + (1.30e6 − 1.45e6i)14-s + 1.34e6·15-s + (−4.10e6 + 8.72e5i)16-s + 3.84e6·17-s + ⋯
 L(s)  = 1 + (0.743 + 0.669i)2-s + (−0.344 − 0.344i)3-s + (0.104 + 0.994i)4-s + (−0.665 + 0.665i)5-s + (−0.0255 − 0.486i)6-s − 0.972i·7-s + (−0.587 + 0.809i)8-s − 0.762i·9-s + (−0.940 + 0.0493i)10-s + (−1.28 + 1.28i)11-s + (0.306 − 0.378i)12-s + (−1.04 − 1.04i)13-s + (0.650 − 0.722i)14-s + 0.459·15-s + (−0.978 + 0.208i)16-s + 0.656·17-s + ⋯

## Functional equation

\begin{aligned} \Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.824 + 0.566i)\, \overline{\Lambda}(12-s) \end{aligned}
\begin{aligned} \Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.824 + 0.566i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$16$$    =    $$2^{4}$$ $$\varepsilon$$ = $-0.824 + 0.566i$ motivic weight = $$11$$ character : $\chi_{16} (13, \cdot )$ primitive : yes self-dual : no analytic rank = 0 Selberg data = $(2,\ 16,\ (\ :11/2),\ -0.824 + 0.566i)$ $L(6)$ $\approx$ $0.0703914 - 0.226609i$ $L(\frac12)$ $\approx$ $0.0703914 - 0.226609i$ $L(\frac{13}{2})$ not available $L(1)$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$ where, for $p \neq 2$, $$F_p(T)$$ is a polynomial of degree 2. If $p = 2$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 + (-33.6 - 30.2i)T$$
good3 $$1 + (145. + 145. i)T + 1.77e5iT^{2}$$
5 $$1 + (4.65e3 - 4.65e3i)T - 4.88e7iT^{2}$$
7 $$1 + 4.32e4iT - 1.97e9T^{2}$$
11 $$1 + (6.85e5 - 6.85e5i)T - 2.85e11iT^{2}$$
13 $$1 + (1.40e6 + 1.40e6i)T + 1.79e12iT^{2}$$
17 $$1 - 3.84e6T + 3.42e13T^{2}$$
19 $$1 + (7.81e6 + 7.81e6i)T + 1.16e14iT^{2}$$
23 $$1 - 1.99e7iT - 9.52e14T^{2}$$
29 $$1 + (-1.18e8 - 1.18e8i)T + 1.22e16iT^{2}$$
31 $$1 - 5.32e7T + 2.54e16T^{2}$$
37 $$1 + (3.70e8 - 3.70e8i)T - 1.77e17iT^{2}$$
41 $$1 - 8.83e7iT - 5.50e17T^{2}$$
43 $$1 + (-1.81e8 + 1.81e8i)T - 9.29e17iT^{2}$$
47 $$1 + 1.92e9T + 2.47e18T^{2}$$
53 $$1 + (-1.39e9 + 1.39e9i)T - 9.26e18iT^{2}$$
59 $$1 + (2.09e9 - 2.09e9i)T - 3.01e19iT^{2}$$
61 $$1 + (-1.23e9 - 1.23e9i)T + 4.35e19iT^{2}$$
67 $$1 + (9.73e9 + 9.73e9i)T + 1.22e20iT^{2}$$
71 $$1 - 2.30e9iT - 2.31e20T^{2}$$
73 $$1 + 2.18e10iT - 3.13e20T^{2}$$
79 $$1 + 1.21e8T + 7.47e20T^{2}$$
83 $$1 + (4.69e10 + 4.69e10i)T + 1.28e21iT^{2}$$
89 $$1 - 6.68e10iT - 2.77e21T^{2}$$
97 $$1 - 4.52e10T + 7.15e21T^{2}$$
show less
\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}

## Imaginary part of the first few zeros on the critical line

−17.24310743411184464809911354314, −15.49592157649862714566166386161, −14.79509464387958969476543859452, −13.08361679003986409935147727489, −12.08506220011877270880267259037, −10.38547013057894201964154252024, −7.66396031003038033503671126897, −6.94839516997619059053348053392, −4.92131942693315712579191969088, −3.14285079519994646074491927167, 0.07886282812753708948790843771, 2.46549648243321155017067791248, 4.53502952500212921927537633659, 5.68142834532944676920640840084, 8.368886730519757743827145059689, 10.25262502401925425436777354401, 11.61798240605425545026035708221, 12.58133161376158491090633196019, 14.10599558606606280572981317443, 15.67268087326054631945010255511