Properties

Label 6-1575e3-1.1-c1e3-0-0
Degree $6$
Conductor $3906984375$
Sign $1$
Analytic cond. $1989.17$
Root an. cond. $3.54632$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3·7-s + 2·8-s − 6·11-s + 6·13-s + 3·14-s + 3·16-s + 6·19-s − 6·22-s + 4·23-s + 6·26-s − 2·29-s + 2·31-s + 3·32-s + 4·37-s + 6·38-s − 2·41-s − 4·43-s + 4·46-s + 8·47-s + 6·49-s + 14·53-s + 6·56-s − 2·58-s − 16·59-s − 6·61-s + 2·62-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.13·7-s + 0.707·8-s − 1.80·11-s + 1.66·13-s + 0.801·14-s + 3/4·16-s + 1.37·19-s − 1.27·22-s + 0.834·23-s + 1.17·26-s − 0.371·29-s + 0.359·31-s + 0.530·32-s + 0.657·37-s + 0.973·38-s − 0.312·41-s − 0.609·43-s + 0.589·46-s + 1.16·47-s + 6/7·49-s + 1.92·53-s + 0.801·56-s − 0.262·58-s − 2.08·59-s − 0.768·61-s + 0.254·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{6} \cdot 7^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 5^{6} \cdot 7^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 5^{6} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(1989.17\)
Root analytic conductor: \(3.54632\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{6} \cdot 5^{6} \cdot 7^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.182875776\)
\(L(\frac12)\) \(\approx\) \(7.182875776\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7$C_1$ \( ( 1 - T )^{3} \)
good2$S_4\times C_2$ \( 1 - T + T^{2} - 3 T^{3} + p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{3} \)
13$S_4\times C_2$ \( 1 - 6 T + 35 T^{2} - 148 T^{3} + 35 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 35 T^{2} - 16 T^{3} + 35 p T^{4} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 6 T + 53 T^{2} - 188 T^{3} + 53 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 - 4 T + 61 T^{2} - 168 T^{3} + 61 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 2 T + 35 T^{2} + 76 T^{3} + 35 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 2 T + 41 T^{2} + 60 T^{3} + 41 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 - 4 T + 31 T^{2} - 232 T^{3} + 31 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 + 2 T + 63 T^{2} - 36 T^{3} + 63 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + 4 T - 15 T^{2} - 488 T^{3} - 15 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 - 8 T + 109 T^{2} - 624 T^{3} + 109 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 14 T + 171 T^{2} - 1188 T^{3} + 171 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 + 16 T + 113 T^{2} + 608 T^{3} + 113 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 6 T + 131 T^{2} + 484 T^{3} + 131 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 8 T + 169 T^{2} + 944 T^{3} + 169 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
71$C_2$ \( ( 1 + 2 T + p T^{2} )^{3} \)
73$S_4\times C_2$ \( 1 - 18 T + 311 T^{2} - 2732 T^{3} + 311 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 12 T + 221 T^{2} - 1576 T^{3} + 221 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 8 T + 185 T^{2} - 1072 T^{3} + 185 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 14 T + 319 T^{2} + 2532 T^{3} + 319 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 22 T + 255 T^{2} - 2404 T^{3} + 255 p T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.264654793757776369510632912497, −8.137970056880691523917135844166, −7.76060352040576764076987458162, −7.58215731215526571648830390384, −7.33158688695093308511754128066, −7.26506621643004436877254036969, −6.69813201697403344413262287118, −6.38507741696901287985663120951, −5.95363788676847045588620498288, −5.92061764177142006265864474119, −5.46151810166782578622229690455, −5.19685652811275782803491563851, −5.13888509721662286926770517091, −4.53149678749193540753853653583, −4.52238170939592920252372974136, −4.36704017857835235399520417665, −3.53821637760154305696874352793, −3.53273732417998985577464912587, −3.24523823287756373723275915030, −2.71672537984208023638457113417, −2.41356931023426051398477148174, −1.85670382850295779095377283274, −1.63155352418946846412030406660, −0.864995185033961696016580530337, −0.804343197405415663425383782976, 0.804343197405415663425383782976, 0.864995185033961696016580530337, 1.63155352418946846412030406660, 1.85670382850295779095377283274, 2.41356931023426051398477148174, 2.71672537984208023638457113417, 3.24523823287756373723275915030, 3.53273732417998985577464912587, 3.53821637760154305696874352793, 4.36704017857835235399520417665, 4.52238170939592920252372974136, 4.53149678749193540753853653583, 5.13888509721662286926770517091, 5.19685652811275782803491563851, 5.46151810166782578622229690455, 5.92061764177142006265864474119, 5.95363788676847045588620498288, 6.38507741696901287985663120951, 6.69813201697403344413262287118, 7.26506621643004436877254036969, 7.33158688695093308511754128066, 7.58215731215526571648830390384, 7.76060352040576764076987458162, 8.137970056880691523917135844166, 8.264654793757776369510632912497

Graph of the $Z$-function along the critical line