Properties

Degree $2$
Conductor $1575$
Sign $0.605 - 0.795i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)4-s + (−0.5 − 0.866i)7-s + 1.73i·13-s + (−0.499 + 0.866i)16-s + (1.5 + 0.866i)19-s + (0.499 − 0.866i)28-s + (0.5 − 0.866i)37-s + 2·43-s + (−0.499 + 0.866i)49-s + (−1.49 + 0.866i)52-s + (−1.5 − 0.866i)61-s − 0.999·64-s + (−0.5 − 0.866i)67-s + (−1.5 + 0.866i)73-s + 1.73i·76-s + ⋯
L(s)  = 1  + (0.5 + 0.866i)4-s + (−0.5 − 0.866i)7-s + 1.73i·13-s + (−0.499 + 0.866i)16-s + (1.5 + 0.866i)19-s + (0.499 − 0.866i)28-s + (0.5 − 0.866i)37-s + 2·43-s + (−0.499 + 0.866i)49-s + (−1.49 + 0.866i)52-s + (−1.5 − 0.866i)61-s − 0.999·64-s + (−0.5 − 0.866i)67-s + (−1.5 + 0.866i)73-s + 1.73i·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.605 - 0.795i$
Motivic weight: \(0\)
Character: $\chi_{1575} (901, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :0),\ 0.605 - 0.795i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.187554920\)
\(L(\frac12)\) \(\approx\) \(1.187554920\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + (0.5 + 0.866i)T \)
good2 \( 1 + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.5 + 0.866i)T^{2} \)
13 \( 1 - 1.73iT - T^{2} \)
17 \( 1 + (0.5 - 0.866i)T^{2} \)
19 \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 + (0.5 - 0.866i)T^{2} \)
37 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - 2T + T^{2} \)
47 \( 1 + (0.5 + 0.866i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \)
79 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + (0.5 + 0.866i)T^{2} \)
97 \( 1 - 1.73iT - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.541884241741345333064276369543, −9.106073597725074568894866773615, −7.87874864765669193479236167158, −7.37919937047148341501953087265, −6.69253119144104813150899422309, −5.85900599019417237478912698898, −4.41956878938508141687838840019, −3.82677478317679182518084185679, −2.88104399043898628402685523472, −1.60655495480169230664533452451, 1.02460460141546533731090149360, 2.59511306074975866219956695347, 3.12760345105075596315641598121, 4.76475524543023702655972934511, 5.63389040558050400263991941961, 5.98100840600319990675127526828, 7.10070670875801345571919352382, 7.79488126140241289617004408679, 8.893357507536551178093015173587, 9.571165917370971600287195208813

Graph of the $Z$-function along the critical line