Properties

Label 2-1575-105.62-c0-0-4
Degree $2$
Conductor $1575$
Sign $0.374 - 0.927i$
Analytic cond. $0.786027$
Root an. cond. $0.886581$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + i)2-s i·4-s + (0.707 + 0.707i)7-s − 1.41i·11-s − 1.41·14-s + 16-s + (1.41 + 1.41i)22-s + (1 + i)23-s + (0.707 − 0.707i)28-s + 1.41·29-s + (−1 + i)32-s + (−1.41 − 1.41i)37-s + (1.41 − 1.41i)43-s − 1.41·44-s − 2·46-s + ⋯
L(s)  = 1  + (−1 + i)2-s i·4-s + (0.707 + 0.707i)7-s − 1.41i·11-s − 1.41·14-s + 16-s + (1.41 + 1.41i)22-s + (1 + i)23-s + (0.707 − 0.707i)28-s + 1.41·29-s + (−1 + i)32-s + (−1.41 − 1.41i)37-s + (1.41 − 1.41i)43-s − 1.41·44-s − 2·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.374 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.374 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.374 - 0.927i$
Analytic conductor: \(0.786027\)
Root analytic conductor: \(0.886581\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1575} (1007, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :0),\ 0.374 - 0.927i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7142859937\)
\(L(\frac12)\) \(\approx\) \(0.7142859937\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + (-0.707 - 0.707i)T \)
good2 \( 1 + (1 - i)T - iT^{2} \)
11 \( 1 + 1.41iT - T^{2} \)
13 \( 1 + iT^{2} \)
17 \( 1 + iT^{2} \)
19 \( 1 + T^{2} \)
23 \( 1 + (-1 - i)T + iT^{2} \)
29 \( 1 - 1.41T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + (1.41 + 1.41i)T + iT^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 + (-1.41 + 1.41i)T - iT^{2} \)
47 \( 1 + iT^{2} \)
53 \( 1 + (-1 - i)T + iT^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + iT^{2} \)
71 \( 1 - 1.41iT - T^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 - 2iT - T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.309685883571173925175218442903, −8.792907969237803486442301795670, −8.334706785895143573860104278009, −7.47604305982107593305790466940, −6.75466752926570529049040403853, −5.68872367496066232242779304205, −5.38411558901332830939081181759, −3.84322538714075061591401874689, −2.69847955662211155004317495067, −1.07939456844774536381434570160, 1.10296322625892260487460429390, 2.08633881823557875856126744968, 3.10433682603351122187581516582, 4.41524000247793279355107971024, 5.02975818321283159676006712284, 6.50480973358106846094628871607, 7.31359997318531951381727217601, 8.119792907449636191952232399477, 8.794077231985517481618958032249, 9.636885548806663486220565990487

Graph of the $Z$-function along the critical line