Properties

Degree 2
Conductor $ 3^{2} \cdot 5^{2} \cdot 7 $
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 7-s + 16-s − 28-s + 2·37-s + 2·43-s + 49-s − 64-s − 2·67-s + 2·79-s − 2·109-s + 112-s + ⋯
L(s)  = 1  − 4-s + 7-s + 16-s − 28-s + 2·37-s + 2·43-s + 49-s − 64-s − 2·67-s + 2·79-s − 2·109-s + 112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{1575} (1126, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 1575,\ (\ :0),\ 1)\)
\(L(\frac{1}{2})\)  \(\approx\)  \(1.001733853\)
\(L(\frac12)\)  \(\approx\)  \(1.001733853\)
\(L(1)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 + T^{2} \)
11 \( 1 + T^{2} \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 + T^{2} \)
29 \( 1 + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 - T )^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 + T )^{2} \)
71 \( 1 + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.421267289855249510190539319436, −8.920125528939978502443454260671, −7.974778591130946263874335005459, −7.56751889911544202471479912421, −6.21591079942062532022809307022, −5.39374229976948031752166756148, −4.57224141069611571839403928779, −3.93328169845901841106526795227, −2.58292344259865140842019713269, −1.14505708980532822680745106738, 1.14505708980532822680745106738, 2.58292344259865140842019713269, 3.93328169845901841106526795227, 4.57224141069611571839403928779, 5.39374229976948031752166756148, 6.21591079942062532022809307022, 7.56751889911544202471479912421, 7.974778591130946263874335005459, 8.920125528939978502443454260671, 9.421267289855249510190539319436

Graph of the $Z$-function along the critical line