Properties

Degree $2$
Conductor $1575$
Sign $0.837 + 0.545i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + (−0.258 − 0.965i)3-s + (0.500 − 0.866i)6-s + (0.965 − 0.258i)7-s + (0.707 − 0.707i)8-s + (−0.866 + 0.499i)9-s + (0.258 + 0.965i)13-s + (0.866 + 0.500i)14-s + 1.00·16-s + (0.258 − 0.965i)17-s + (−0.965 − 0.258i)18-s + (−0.866 − 0.5i)19-s + (−0.499 − 0.866i)21-s + (−0.866 − 0.5i)24-s + (−0.500 + 0.866i)26-s + (0.707 + 0.707i)27-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)2-s + (−0.258 − 0.965i)3-s + (0.500 − 0.866i)6-s + (0.965 − 0.258i)7-s + (0.707 − 0.707i)8-s + (−0.866 + 0.499i)9-s + (0.258 + 0.965i)13-s + (0.866 + 0.500i)14-s + 1.00·16-s + (0.258 − 0.965i)17-s + (−0.965 − 0.258i)18-s + (−0.866 − 0.5i)19-s + (−0.499 − 0.866i)21-s + (−0.866 − 0.5i)24-s + (−0.500 + 0.866i)26-s + (0.707 + 0.707i)27-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.837 + 0.545i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.837 + 0.545i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.837 + 0.545i$
Motivic weight: \(0\)
Character: $\chi_{1575} (1507, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :0),\ 0.837 + 0.545i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.623998999\)
\(L(\frac12)\) \(\approx\) \(1.623998999\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.258 + 0.965i)T \)
5 \( 1 \)
7 \( 1 + (-0.965 + 0.258i)T \)
good2 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
11 \( 1 + (-0.5 - 0.866i)T^{2} \)
13 \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \)
17 \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \)
19 \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (0.866 + 0.5i)T^{2} \)
29 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \)
41 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
43 \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \)
47 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
53 \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \)
59 \( 1 + iT - T^{2} \)
61 \( 1 - T + T^{2} \)
67 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
71 \( 1 + 2T + T^{2} \)
73 \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \)
79 \( 1 - iT - T^{2} \)
83 \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \)
89 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
97 \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.375931597112769792684853802081, −8.515909657754095051086779995012, −7.54721339914852121790445845387, −7.09037178307977937680674286625, −6.35211964297955901417087083761, −5.47182954764859678151774770133, −4.82764857528534299601012234913, −3.91134506199235148467388215251, −2.27961541601106450202869188209, −1.23447959103052203842511443275, 1.80503919206670076590381488672, 2.93678566040578532679537013896, 3.92881235075408855005909353873, 4.39832766630306848906170610681, 5.51546046867151206112909658997, 5.84224031396770577077822551973, 7.49449117897726055549467287743, 8.282220207184451499158823436510, 8.817778428943971704438896512118, 10.05470266199976570119778962133

Graph of the $Z$-function along the critical line