L(s) = 1 | + (−1.61 − 2.80i)3-s + (−0.618 + 1.07i)5-s + (−3.73 + 6.47i)9-s + (−1.23 − 2.14i)11-s − 5.23·13-s + 4·15-s + (−2.23 − 3.87i)17-s + (1.61 − 2.80i)19-s + (−2 + 3.46i)23-s + (1.73 + 3.00i)25-s + 14.4·27-s + 4.47·29-s + (3.23 + 5.60i)31-s + (−3.99 + 6.92i)33-s + (−2.23 + 3.87i)37-s + ⋯ |
L(s) = 1 | + (−0.934 − 1.61i)3-s + (−0.276 + 0.478i)5-s + (−1.24 + 2.15i)9-s + (−0.372 − 0.645i)11-s − 1.45·13-s + 1.03·15-s + (−0.542 − 0.939i)17-s + (0.371 − 0.642i)19-s + (−0.417 + 0.722i)23-s + (0.347 + 0.601i)25-s + 2.78·27-s + 0.830·29-s + (0.581 + 1.00i)31-s + (−0.696 + 1.20i)33-s + (−0.367 + 0.636i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5446436649\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5446436649\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (1.61 + 2.80i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.618 - 1.07i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.23 + 2.14i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.23T + 13T^{2} \) |
| 17 | \( 1 + (2.23 + 3.87i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.61 + 2.80i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.47T + 29T^{2} \) |
| 31 | \( 1 + (-3.23 - 5.60i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.23 - 3.87i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.472T + 41T^{2} \) |
| 43 | \( 1 + 2.47T + 43T^{2} \) |
| 47 | \( 1 + (-0.763 + 1.32i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5 - 8.66i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.38 + 4.12i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.38 + 5.85i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2 + 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12.9T + 71T^{2} \) |
| 73 | \( 1 + (-7.47 - 12.9i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.47 + 4.28i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 4.76T + 83T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3.52T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.464489960646440472347023071574, −8.325713162145498666459556249370, −7.61783212881687598754646010466, −6.95518031472263706758640763724, −6.55443480069745489458794101045, −5.34091668004399337499352300294, −4.92744113464667765127445345725, −3.05334201112883358038135800779, −2.29446371429252660959904335150, −0.881876731799498281997042878081,
0.31518776568869975407091987471, 2.44068474115014444914559846124, 3.81364795434979051880920249280, 4.52625896132045319689355619955, 5.00433023383203266845725630757, 5.90385733966935066186706146635, 6.77871022911992178770189477970, 7.988425110978159178067378461054, 8.775081635232506789533455307331, 9.727792665595658806170567889271