Properties

Label 8-1560e4-1.1-c1e4-0-3
Degree $8$
Conductor $5.922\times 10^{12}$
Sign $1$
Analytic cond. $24077.2$
Root an. cond. $3.52939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·5-s − 2·7-s + 9-s + 4·11-s + 6·13-s − 8·15-s + 8·17-s − 4·19-s − 4·21-s + 4·23-s + 10·25-s − 2·27-s + 8·29-s − 12·31-s + 8·33-s + 8·35-s − 4·37-s + 12·39-s − 4·41-s − 14·43-s − 4·45-s + 8·47-s + 5·49-s + 16·51-s − 16·55-s − 8·57-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.78·5-s − 0.755·7-s + 1/3·9-s + 1.20·11-s + 1.66·13-s − 2.06·15-s + 1.94·17-s − 0.917·19-s − 0.872·21-s + 0.834·23-s + 2·25-s − 0.384·27-s + 1.48·29-s − 2.15·31-s + 1.39·33-s + 1.35·35-s − 0.657·37-s + 1.92·39-s − 0.624·41-s − 2.13·43-s − 0.596·45-s + 1.16·47-s + 5/7·49-s + 2.24·51-s − 2.15·55-s − 1.05·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(24077.2\)
Root analytic conductor: \(3.52939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.999663534\)
\(L(\frac12)\) \(\approx\) \(2.999663534\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
5$C_1$ \( ( 1 + T )^{4} \)
13$C_2^2$ \( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
good7$D_4\times C_2$ \( 1 + 2 T - T^{2} - 18 T^{3} - 52 T^{4} - 18 p T^{5} - p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 8 T + 24 T^{2} - 48 T^{3} + 223 T^{4} - 48 p T^{5} + 24 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 2 T - 19 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 - 8 T - 48 T^{3} + 1399 T^{4} - 48 p T^{5} - 8 p^{3} T^{7} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 + 6 T + p T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 + 4 T - 22 T^{2} - 144 T^{3} - 517 T^{4} - 144 p T^{5} - 22 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 + 4 T - 60 T^{2} - 24 T^{3} + 3439 T^{4} - 24 p T^{5} - 60 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 + 14 T + 71 T^{2} + 546 T^{3} + 5348 T^{4} + 546 p T^{5} + 71 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 66 T^{2} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 8 T - 60 T^{2} - 48 T^{3} + 8119 T^{4} - 48 p T^{5} - 60 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
67$D_4\times C_2$ \( 1 + 14 T + 23 T^{2} + 546 T^{3} + 12308 T^{4} + 546 p T^{5} + 23 p^{2} T^{6} + 14 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 - 8 T - 4 T^{2} + 592 T^{3} - 4961 T^{4} + 592 p T^{5} - 4 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 6 T + 145 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 11 T + p T^{2} )^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{4} \)
89$D_4\times C_2$ \( 1 - 12 T + 20 T^{2} + 648 T^{3} - 5361 T^{4} + 648 p T^{5} + 20 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 + 6 T + 83 T^{2} - 1446 T^{3} - 10692 T^{4} - 1446 p T^{5} + 83 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.68552624759031894594561701024, −6.49744251544911036933718549654, −6.41210480003247408956033606435, −6.16572373340526622370234517942, −5.99617148284501791290634440915, −5.66768955616960738957639243789, −5.42873300444480055101420537335, −5.12550873319890695795127753293, −4.89318094306222502417230133731, −4.69399344852792989210299597342, −4.44904808021920130465449129724, −4.14079687724193596619148296892, −3.73885815337088984485363399541, −3.71699076504449678176402542571, −3.61686718833651741303723888113, −3.23086969810478083994888703164, −3.21057665565191103013764202998, −3.12141546773569137141680512959, −2.58821254394243041194366465828, −2.21004397976254131533640041590, −1.81818417510931104273878542811, −1.58113463419475597125381873997, −1.15032272715632732947321871745, −0.860751371202008362204705669256, −0.35064554229325580389145724770, 0.35064554229325580389145724770, 0.860751371202008362204705669256, 1.15032272715632732947321871745, 1.58113463419475597125381873997, 1.81818417510931104273878542811, 2.21004397976254131533640041590, 2.58821254394243041194366465828, 3.12141546773569137141680512959, 3.21057665565191103013764202998, 3.23086969810478083994888703164, 3.61686718833651741303723888113, 3.71699076504449678176402542571, 3.73885815337088984485363399541, 4.14079687724193596619148296892, 4.44904808021920130465449129724, 4.69399344852792989210299597342, 4.89318094306222502417230133731, 5.12550873319890695795127753293, 5.42873300444480055101420537335, 5.66768955616960738957639243789, 5.99617148284501791290634440915, 6.16572373340526622370234517942, 6.41210480003247408956033606435, 6.49744251544911036933718549654, 6.68552624759031894594561701024

Graph of the $Z$-function along the critical line