| L(s) = 1 | + (−0.5 − 0.866i)3-s − 2.41i·5-s + (−3.58 − 2.07i)7-s + (−0.499 + 0.866i)9-s + (3 − 1.73i)11-s + (1.5 + 3.27i)13-s + (−2.08 + 1.20i)15-s + (3.08 − 5.35i)17-s + (−3 − 1.73i)19-s + 4.14i·21-s + (1 + 1.73i)23-s − 0.821·25-s + 0.999·27-s + (4.08 + 7.08i)29-s + 7.60i·31-s + ⋯ |
| L(s) = 1 | + (−0.288 − 0.499i)3-s − 1.07i·5-s + (−1.35 − 0.783i)7-s + (−0.166 + 0.288i)9-s + (0.904 − 0.522i)11-s + (0.416 + 0.909i)13-s + (−0.539 + 0.311i)15-s + (0.749 − 1.29i)17-s + (−0.688 − 0.397i)19-s + 0.904i·21-s + (0.208 + 0.361i)23-s − 0.164·25-s + 0.192·27-s + (0.759 + 1.31i)29-s + 1.36i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.107 + 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.107 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.604169 - 0.672776i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.604169 - 0.672776i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-1.5 - 3.27i)T \) |
| good | 5 | \( 1 + 2.41iT - 5T^{2} \) |
| 7 | \( 1 + (3.58 + 2.07i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 + 1.73i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.08 + 5.35i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3 + 1.73i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1 - 1.73i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.08 - 7.08i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.60iT - 31T^{2} \) |
| 37 | \( 1 + (-0.910 + 0.525i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.08 + 2.93i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.410 + 0.711i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 10.3iT - 47T^{2} \) |
| 53 | \( 1 + 10.1T + 53T^{2} \) |
| 59 | \( 1 + (-1.17 - 0.680i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 - 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.58 + 2.07i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 1.73i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 11.3iT - 73T^{2} \) |
| 79 | \( 1 - 13.1T + 79T^{2} \) |
| 83 | \( 1 - 11.7iT - 83T^{2} \) |
| 89 | \( 1 + (-6 + 3.46i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.76 + 1.02i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.63542491920370179335042059816, −11.94220474938429936559650112401, −10.72666758155861706231801466833, −9.398049938313882028041960117484, −8.757609311142942260007177683704, −7.12438838360955203015998278324, −6.40095072983450598738511208066, −4.91801569115448637966531894565, −3.46795003925997356317729915601, −0.984190949680894010672233780496,
2.84363626403562000721962077990, 3.98459873337063147491050668106, 6.07679891007316324166050458079, 6.35042230918559717612293869896, 8.032716176996913019862520911085, 9.447052467538794767492652999976, 10.13855176634361831893891498911, 11.05695514709130844748536269475, 12.28370766636325541977876847689, 12.96078973274210685023345368946