Properties

Label 8-1536e4-1.1-c1e4-0-3
Degree $8$
Conductor $5.566\times 10^{12}$
Sign $1$
Analytic cond. $22629.4$
Root an. cond. $3.50214$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s − 24·17-s + 16·25-s + 8·41-s + 8·49-s − 32·73-s + 3·81-s − 8·89-s + 8·97-s − 40·113-s − 28·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 48·153-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 2/3·9-s − 5.82·17-s + 16/5·25-s + 1.24·41-s + 8/7·49-s − 3.74·73-s + 1/3·81-s − 0.847·89-s + 0.812·97-s − 3.76·113-s − 2.54·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 3.88·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{36} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(22629.4\)
Root analytic conductor: \(3.50214\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{36} \cdot 3^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3740965821\)
\(L(\frac12)\) \(\approx\) \(0.3740965821\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 60 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 102 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 134 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 162 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.89075077343429651326380444043, −6.53831527705011687095527797070, −6.44892099048159614654016620824, −6.08690711260584154577645668082, −5.86420289870004039399181292456, −5.85231550382732688502712607515, −5.41139737298482303099850265332, −5.05328345852048839220373226192, −5.01488211565020311430219594598, −4.59954440103965887802302073423, −4.56658796897671523681622390349, −4.28781478118713908139072943339, −4.14372872299324192402002588248, −4.09541131555695810006852240627, −3.56263225918027442201960691961, −3.05481220348225492357865504944, −3.03358164120905729934056503887, −2.69203294738754593302184304092, −2.46387766530499081724185067589, −2.31393935281418529212285917885, −2.03547712999414382622382547343, −1.60181474126501741136921801089, −1.22283087260145487921329597734, −0.68965853604184405565575827159, −0.14421751405532148046622919484, 0.14421751405532148046622919484, 0.68965853604184405565575827159, 1.22283087260145487921329597734, 1.60181474126501741136921801089, 2.03547712999414382622382547343, 2.31393935281418529212285917885, 2.46387766530499081724185067589, 2.69203294738754593302184304092, 3.03358164120905729934056503887, 3.05481220348225492357865504944, 3.56263225918027442201960691961, 4.09541131555695810006852240627, 4.14372872299324192402002588248, 4.28781478118713908139072943339, 4.56658796897671523681622390349, 4.59954440103965887802302073423, 5.01488211565020311430219594598, 5.05328345852048839220373226192, 5.41139737298482303099850265332, 5.85231550382732688502712607515, 5.86420289870004039399181292456, 6.08690711260584154577645668082, 6.44892099048159614654016620824, 6.53831527705011687095527797070, 6.89075077343429651326380444043

Graph of the $Z$-function along the critical line