Properties

Label 4-1536e2-1.1-c1e2-0-24
Degree $4$
Conductor $2359296$
Sign $1$
Analytic cond. $150.430$
Root an. cond. $3.50214$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·5-s + 3·9-s − 4·11-s − 4·13-s − 8·15-s + 4·17-s − 8·23-s + 4·25-s + 4·27-s − 12·29-s − 8·33-s − 12·37-s − 8·39-s − 4·41-s + 8·43-s − 12·45-s − 8·47-s − 12·49-s + 8·51-s − 12·53-s + 16·55-s − 8·59-s − 12·61-s + 16·65-s − 16·69-s + 8·75-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.78·5-s + 9-s − 1.20·11-s − 1.10·13-s − 2.06·15-s + 0.970·17-s − 1.66·23-s + 4/5·25-s + 0.769·27-s − 2.22·29-s − 1.39·33-s − 1.97·37-s − 1.28·39-s − 0.624·41-s + 1.21·43-s − 1.78·45-s − 1.16·47-s − 1.71·49-s + 1.12·51-s − 1.64·53-s + 2.15·55-s − 1.04·59-s − 1.53·61-s + 1.98·65-s − 1.92·69-s + 0.923·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2359296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2359296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2359296\)    =    \(2^{18} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(150.430\)
Root analytic conductor: \(3.50214\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2359296,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
good5$D_{4}$ \( 1 + 4 T + 12 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 12 T + 92 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 12 T + 78 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 8 T + 94 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 8 T + 38 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 12 T + 124 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 8 T + 102 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 12 T + 126 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 32 T + 412 T^{2} - 32 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 12 T + 194 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$C_4$ \( 1 + 12 T + 86 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 4 T + 166 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.262135964023016316833285959871, −8.823163930775301695731638374761, −8.067487474113410586469825652917, −8.011713369281578914986190302397, −7.73240308159423135274188229231, −7.67751568722356275156199791003, −7.04474590870111194820967875618, −6.65630761008210765367080581358, −5.90787219905264460499837571541, −5.48776283581282269060039661630, −4.88273444971697314366506320041, −4.63911921690131382495963156357, −3.94765746651364394631287618129, −3.64256683552517482307841969869, −3.24006328235972876376499831973, −2.85874701087795609631882066196, −1.93204876129471783406073253021, −1.74841003013048343609082108979, 0, 0, 1.74841003013048343609082108979, 1.93204876129471783406073253021, 2.85874701087795609631882066196, 3.24006328235972876376499831973, 3.64256683552517482307841969869, 3.94765746651364394631287618129, 4.63911921690131382495963156357, 4.88273444971697314366506320041, 5.48776283581282269060039661630, 5.90787219905264460499837571541, 6.65630761008210765367080581358, 7.04474590870111194820967875618, 7.67751568722356275156199791003, 7.73240308159423135274188229231, 8.011713369281578914986190302397, 8.067487474113410586469825652917, 8.823163930775301695731638374761, 9.262135964023016316833285959871

Graph of the $Z$-function along the critical line