Properties

Label 2-39e2-1.1-c3-0-131
Degree $2$
Conductor $1521$
Sign $-1$
Analytic cond. $89.7419$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.32·2-s − 6.25·4-s + 12.9·5-s − 5.54·7-s + 18.8·8-s − 17.1·10-s − 0.841·11-s + 7.33·14-s + 25.1·16-s − 10.1·17-s + 73.0·19-s − 81.0·20-s + 1.11·22-s − 139.·23-s + 42.9·25-s + 34.6·28-s − 250.·29-s + 161.·31-s − 183.·32-s + 13.4·34-s − 71.8·35-s − 195.·37-s − 96.6·38-s + 244.·40-s + 183.·41-s + 115.·43-s + 5.26·44-s + ⋯
L(s)  = 1  − 0.467·2-s − 0.781·4-s + 1.15·5-s − 0.299·7-s + 0.832·8-s − 0.541·10-s − 0.0230·11-s + 0.139·14-s + 0.392·16-s − 0.145·17-s + 0.882·19-s − 0.905·20-s + 0.0107·22-s − 1.26·23-s + 0.343·25-s + 0.233·28-s − 1.60·29-s + 0.935·31-s − 1.01·32-s + 0.0679·34-s − 0.347·35-s − 0.870·37-s − 0.412·38-s + 0.965·40-s + 0.699·41-s + 0.408·43-s + 0.0180·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(89.7419\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1521,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 + 1.32T + 8T^{2} \)
5 \( 1 - 12.9T + 125T^{2} \)
7 \( 1 + 5.54T + 343T^{2} \)
11 \( 1 + 0.841T + 1.33e3T^{2} \)
17 \( 1 + 10.1T + 4.91e3T^{2} \)
19 \( 1 - 73.0T + 6.85e3T^{2} \)
23 \( 1 + 139.T + 1.21e4T^{2} \)
29 \( 1 + 250.T + 2.43e4T^{2} \)
31 \( 1 - 161.T + 2.97e4T^{2} \)
37 \( 1 + 195.T + 5.06e4T^{2} \)
41 \( 1 - 183.T + 6.89e4T^{2} \)
43 \( 1 - 115.T + 7.95e4T^{2} \)
47 \( 1 - 551.T + 1.03e5T^{2} \)
53 \( 1 - 324.T + 1.48e5T^{2} \)
59 \( 1 + 521.T + 2.05e5T^{2} \)
61 \( 1 + 444.T + 2.26e5T^{2} \)
67 \( 1 + 55.0T + 3.00e5T^{2} \)
71 \( 1 - 279.T + 3.57e5T^{2} \)
73 \( 1 + 908.T + 3.89e5T^{2} \)
79 \( 1 - 941.T + 4.93e5T^{2} \)
83 \( 1 + 946.T + 5.71e5T^{2} \)
89 \( 1 + 32.9T + 7.04e5T^{2} \)
97 \( 1 - 68.2T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.012979290613909614626186949390, −7.966954019797438036833921095647, −7.26155308632196908736947199151, −6.04001798649121482747245766525, −5.56514861811339685089209649693, −4.53332026892015577658851508209, −3.55492865822564213141257511648, −2.25659511194147252937559694572, −1.26778905899924705866542381601, 0, 1.26778905899924705866542381601, 2.25659511194147252937559694572, 3.55492865822564213141257511648, 4.53332026892015577658851508209, 5.56514861811339685089209649693, 6.04001798649121482747245766525, 7.26155308632196908736947199151, 7.966954019797438036833921095647, 9.012979290613909614626186949390

Graph of the $Z$-function along the critical line