Properties

Label 2-39e2-1.1-c3-0-5
Degree $2$
Conductor $1521$
Sign $1$
Analytic cond. $89.7419$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.75·2-s − 0.402·4-s − 0.313·5-s − 28.5·7-s + 23.1·8-s + 0.863·10-s − 63.2·11-s + 78.7·14-s − 60.6·16-s + 98.8·17-s + 14.4·19-s + 0.126·20-s + 174.·22-s − 14.3·23-s − 124.·25-s + 11.5·28-s − 196.·29-s − 118.·31-s − 18.2·32-s − 272.·34-s + 8.94·35-s − 319.·37-s − 39.9·38-s − 7.25·40-s − 346.·41-s − 69.4·43-s + 25.4·44-s + ⋯
L(s)  = 1  − 0.974·2-s − 0.0503·4-s − 0.0280·5-s − 1.54·7-s + 1.02·8-s + 0.0272·10-s − 1.73·11-s + 1.50·14-s − 0.947·16-s + 1.40·17-s + 0.174·19-s + 0.00141·20-s + 1.68·22-s − 0.130·23-s − 0.999·25-s + 0.0776·28-s − 1.25·29-s − 0.687·31-s − 0.100·32-s − 1.37·34-s + 0.0432·35-s − 1.41·37-s − 0.170·38-s − 0.0286·40-s − 1.31·41-s − 0.246·43-s + 0.0872·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(89.7419\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1521,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.08258654888\)
\(L(\frac12)\) \(\approx\) \(0.08258654888\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 + 2.75T + 8T^{2} \)
5 \( 1 + 0.313T + 125T^{2} \)
7 \( 1 + 28.5T + 343T^{2} \)
11 \( 1 + 63.2T + 1.33e3T^{2} \)
17 \( 1 - 98.8T + 4.91e3T^{2} \)
19 \( 1 - 14.4T + 6.85e3T^{2} \)
23 \( 1 + 14.3T + 1.21e4T^{2} \)
29 \( 1 + 196.T + 2.43e4T^{2} \)
31 \( 1 + 118.T + 2.97e4T^{2} \)
37 \( 1 + 319.T + 5.06e4T^{2} \)
41 \( 1 + 346.T + 6.89e4T^{2} \)
43 \( 1 + 69.4T + 7.95e4T^{2} \)
47 \( 1 - 101.T + 1.03e5T^{2} \)
53 \( 1 + 594.T + 1.48e5T^{2} \)
59 \( 1 - 204.T + 2.05e5T^{2} \)
61 \( 1 + 215.T + 2.26e5T^{2} \)
67 \( 1 + 68.6T + 3.00e5T^{2} \)
71 \( 1 + 946.T + 3.57e5T^{2} \)
73 \( 1 - 779.T + 3.89e5T^{2} \)
79 \( 1 - 240.T + 4.93e5T^{2} \)
83 \( 1 + 855.T + 5.71e5T^{2} \)
89 \( 1 + 1.26e3T + 7.04e5T^{2} \)
97 \( 1 + 662.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.264600952167326051817724766626, −8.295023658228377603258386399891, −7.64231421111457207322901581021, −7.01055079551228941559688229818, −5.76851971624663462202681407684, −5.17916982528235048377202358297, −3.76988871326615197192834020698, −3.00730573986991410855552092354, −1.70279964804338782269623545252, −0.15865896336942477923792960432, 0.15865896336942477923792960432, 1.70279964804338782269623545252, 3.00730573986991410855552092354, 3.76988871326615197192834020698, 5.17916982528235048377202358297, 5.76851971624663462202681407684, 7.01055079551228941559688229818, 7.64231421111457207322901581021, 8.295023658228377603258386399891, 9.264600952167326051817724766626

Graph of the $Z$-function along the critical line