Properties

Label 8-39e8-1.1-c1e4-0-1
Degree $8$
Conductor $5.352\times 10^{12}$
Sign $1$
Analytic cond. $21758.3$
Root an. cond. $3.48500$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 3·16-s + 8·17-s − 16·23-s + 4·25-s − 8·29-s − 16·43-s + 12·49-s + 8·53-s + 8·61-s + 12·64-s + 16·68-s − 32·92-s + 8·100-s + 8·101-s − 32·103-s − 24·113-s − 16·116-s + 36·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 4-s + 3/4·16-s + 1.94·17-s − 3.33·23-s + 4/5·25-s − 1.48·29-s − 2.43·43-s + 12/7·49-s + 1.09·53-s + 1.02·61-s + 3/2·64-s + 1.94·68-s − 3.33·92-s + 4/5·100-s + 0.796·101-s − 3.15·103-s − 2.25·113-s − 1.48·116-s + 3.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(21758.3\)
Root analytic conductor: \(3.48500\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.203720259\)
\(L(\frac12)\) \(\approx\) \(1.203720259\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2$D_4\times C_2$ \( 1 - p T^{2} + T^{4} - p^{3} T^{6} + p^{4} T^{8} \)
5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
17$C_4$ \( ( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
31$D_4\times C_2$ \( 1 - 76 T^{2} + 2854 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 76 T^{2} + 3670 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 - 20 T^{2} + 1414 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 52 T^{2} + 486 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
59$D_4\times C_2$ \( 1 - 164 T^{2} + 13174 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
61$D_{4}$ \( ( 1 - 4 T - 2 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 220 T^{2} + 20566 T^{4} - 220 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 138 T^{2} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 156 T^{2} + 12134 T^{4} - 156 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 260 T^{2} + 30166 T^{4} - 260 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 52 T^{2} + 11910 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 316 T^{2} + 43270 T^{4} - 316 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.90043492964322665540792776585, −6.52959268461630362292830159002, −6.28627702241700423378615421842, −5.94202440577143058534471705652, −5.91176384280922585641463164091, −5.67705588196388609971948333683, −5.58682616470800108999038435411, −5.46861574243499322804283991877, −4.89390488221759809373207876682, −4.75739521901296692030258979398, −4.73763589401092088537985346974, −4.15611614972405100745365881388, −3.85492315404100634831648511588, −3.85439872593714081772190906812, −3.48422170140855559161992741632, −3.32265561939173602520037418595, −3.30004140918007563133705809734, −2.53104118696299928706669611890, −2.39408715863243546139022398651, −2.27157440887970660545576082852, −2.06125133608318246497319033480, −1.44680435929933217849711726220, −1.32686348417768137272425893545, −0.997291238901048976908257670895, −0.19196359566912129965311480479, 0.19196359566912129965311480479, 0.997291238901048976908257670895, 1.32686348417768137272425893545, 1.44680435929933217849711726220, 2.06125133608318246497319033480, 2.27157440887970660545576082852, 2.39408715863243546139022398651, 2.53104118696299928706669611890, 3.30004140918007563133705809734, 3.32265561939173602520037418595, 3.48422170140855559161992741632, 3.85439872593714081772190906812, 3.85492315404100634831648511588, 4.15611614972405100745365881388, 4.73763589401092088537985346974, 4.75739521901296692030258979398, 4.89390488221759809373207876682, 5.46861574243499322804283991877, 5.58682616470800108999038435411, 5.67705588196388609971948333683, 5.91176384280922585641463164091, 5.94202440577143058534471705652, 6.28627702241700423378615421842, 6.52959268461630362292830159002, 6.90043492964322665540792776585

Graph of the $Z$-function along the critical line