Properties

Label 2-152-1.1-c3-0-4
Degree $2$
Conductor $152$
Sign $1$
Analytic cond. $8.96829$
Root an. cond. $2.99471$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.33·3-s + 18.4·5-s + 10.3·7-s − 25.2·9-s + 50.4·11-s − 61.8·13-s + 24.5·15-s + 68.1·17-s − 19·19-s + 13.8·21-s + 145.·23-s + 215.·25-s − 69.5·27-s + 42.6·29-s + 91.6·31-s + 67.1·33-s + 191.·35-s − 400.·37-s − 82.3·39-s − 123.·41-s + 449.·43-s − 465.·45-s − 453.·47-s − 235.·49-s + 90.7·51-s + 437.·53-s + 930.·55-s + ⋯
L(s)  = 1  + 0.256·3-s + 1.64·5-s + 0.560·7-s − 0.934·9-s + 1.38·11-s − 1.31·13-s + 0.422·15-s + 0.971·17-s − 0.229·19-s + 0.143·21-s + 1.32·23-s + 1.72·25-s − 0.495·27-s + 0.272·29-s + 0.531·31-s + 0.354·33-s + 0.925·35-s − 1.78·37-s − 0.338·39-s − 0.469·41-s + 1.59·43-s − 1.54·45-s − 1.40·47-s − 0.685·49-s + 0.249·51-s + 1.13·53-s + 2.28·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $1$
Analytic conductor: \(8.96829\)
Root analytic conductor: \(2.99471\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 152,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.419254749\)
\(L(\frac12)\) \(\approx\) \(2.419254749\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 - 1.33T + 27T^{2} \)
5 \( 1 - 18.4T + 125T^{2} \)
7 \( 1 - 10.3T + 343T^{2} \)
11 \( 1 - 50.4T + 1.33e3T^{2} \)
13 \( 1 + 61.8T + 2.19e3T^{2} \)
17 \( 1 - 68.1T + 4.91e3T^{2} \)
23 \( 1 - 145.T + 1.21e4T^{2} \)
29 \( 1 - 42.6T + 2.43e4T^{2} \)
31 \( 1 - 91.6T + 2.97e4T^{2} \)
37 \( 1 + 400.T + 5.06e4T^{2} \)
41 \( 1 + 123.T + 6.89e4T^{2} \)
43 \( 1 - 449.T + 7.95e4T^{2} \)
47 \( 1 + 453.T + 1.03e5T^{2} \)
53 \( 1 - 437.T + 1.48e5T^{2} \)
59 \( 1 + 159.T + 2.05e5T^{2} \)
61 \( 1 + 476.T + 2.26e5T^{2} \)
67 \( 1 + 629.T + 3.00e5T^{2} \)
71 \( 1 - 471.T + 3.57e5T^{2} \)
73 \( 1 + 725.T + 3.89e5T^{2} \)
79 \( 1 + 1.05e3T + 4.93e5T^{2} \)
83 \( 1 + 726.T + 5.71e5T^{2} \)
89 \( 1 + 468.T + 7.04e5T^{2} \)
97 \( 1 + 891.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.53423769184957107385273155462, −11.57634169368328896157645934412, −10.30421237657415233727759204841, −9.410295358094396786156531998403, −8.646697194263880921628224725448, −7.08560015822055152943903179282, −5.91610392734312770227658799824, −4.93119500544333480186648899976, −2.90852234140441927933705209571, −1.55078997898541869763998366431, 1.55078997898541869763998366431, 2.90852234140441927933705209571, 4.93119500544333480186648899976, 5.91610392734312770227658799824, 7.08560015822055152943903179282, 8.646697194263880921628224725448, 9.410295358094396786156531998403, 10.30421237657415233727759204841, 11.57634169368328896157645934412, 12.53423769184957107385273155462

Graph of the $Z$-function along the critical line