Properties

Degree $16$
Conductor $2.732\times 10^{25}$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s − 11-s − 20·13-s − 4·17-s + 19-s + 12·23-s + 5·25-s + 12·29-s + 8·31-s + 8·35-s − 12·41-s + 2·43-s − 9·47-s + 11·49-s + 7·53-s + 2·55-s − 4·59-s − 25·61-s + 40·65-s − 30·67-s − 22·71-s + 4·73-s + 4·77-s + 7·79-s + 58·83-s + 8·85-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s − 0.301·11-s − 5.54·13-s − 0.970·17-s + 0.229·19-s + 2.50·23-s + 25-s + 2.22·29-s + 1.43·31-s + 1.35·35-s − 1.87·41-s + 0.304·43-s − 1.31·47-s + 11/7·49-s + 0.961·53-s + 0.269·55-s − 0.520·59-s − 3.20·61-s + 4.96·65-s − 3.66·67-s − 2.61·71-s + 0.468·73-s + 0.455·77-s + 0.787·79-s + 6.36·83-s + 0.867·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{24} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{24} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{24} \cdot 3^{24} \cdot 7^{8}\)
Sign: $1$
Motivic weight: \(1\)
Character: induced by $\chi_{1512} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{24} \cdot 3^{24} \cdot 7^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.023037766\)
\(L(\frac12)\) \(\approx\) \(1.023037766\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + 4 T + 5 T^{2} - 33 T^{3} - 136 T^{4} - 33 p T^{5} + 5 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
good5 \( 1 + 2 T - T^{2} + 4 p T^{3} + 36 T^{4} - 46 T^{5} + 66 p T^{6} + 151 p T^{7} - 374 T^{8} + 151 p^{2} T^{9} + 66 p^{3} T^{10} - 46 p^{3} T^{11} + 36 p^{4} T^{12} + 4 p^{6} T^{13} - p^{6} T^{14} + 2 p^{7} T^{15} + p^{8} T^{16} \)
11 \( 1 + T - 15 T^{2} + 108 T^{3} + 240 T^{4} - 1366 T^{5} + 5502 T^{6} + 16607 T^{7} - 62387 T^{8} + 16607 p T^{9} + 5502 p^{2} T^{10} - 1366 p^{3} T^{11} + 240 p^{4} T^{12} + 108 p^{5} T^{13} - 15 p^{6} T^{14} + p^{7} T^{15} + p^{8} T^{16} \)
13 \( ( 1 + 10 T + 73 T^{2} + 389 T^{3} + 1556 T^{4} + 389 p T^{5} + 73 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
17 \( 1 + 4 T - 29 T^{2} - 246 T^{3} + 203 T^{4} + 5446 T^{5} + 13245 T^{6} - 47608 T^{7} - 341903 T^{8} - 47608 p T^{9} + 13245 p^{2} T^{10} + 5446 p^{3} T^{11} + 203 p^{4} T^{12} - 246 p^{5} T^{13} - 29 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
19 \( 1 - T + 3 T^{2} + 94 T^{3} - 40 T^{4} - 786 T^{5} - 206 T^{6} - 9541 T^{7} - 158247 T^{8} - 9541 p T^{9} - 206 p^{2} T^{10} - 786 p^{3} T^{11} - 40 p^{4} T^{12} + 94 p^{5} T^{13} + 3 p^{6} T^{14} - p^{7} T^{15} + p^{8} T^{16} \)
23 \( 1 - 12 T + 61 T^{2} - 194 T^{3} + 271 T^{4} + 838 T^{5} - 11959 T^{6} + 133924 T^{7} - 856813 T^{8} + 133924 p T^{9} - 11959 p^{2} T^{10} + 838 p^{3} T^{11} + 271 p^{4} T^{12} - 194 p^{5} T^{13} + 61 p^{6} T^{14} - 12 p^{7} T^{15} + p^{8} T^{16} \)
29 \( ( 1 - 6 T + 59 T^{2} - 387 T^{3} + 2091 T^{4} - 387 p T^{5} + 59 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
31 \( 1 - 8 T + 9 T^{2} + 102 T^{3} - 1287 T^{4} + 10998 T^{5} - 5977 T^{6} - 318082 T^{7} + 2302767 T^{8} - 318082 p T^{9} - 5977 p^{2} T^{10} + 10998 p^{3} T^{11} - 1287 p^{4} T^{12} + 102 p^{5} T^{13} + 9 p^{6} T^{14} - 8 p^{7} T^{15} + p^{8} T^{16} \)
37 \( 1 - 63 T^{2} - 114 T^{3} + 1781 T^{4} + 5700 T^{5} + 37899 T^{6} - 141018 T^{7} - 2640591 T^{8} - 141018 p T^{9} + 37899 p^{2} T^{10} + 5700 p^{3} T^{11} + 1781 p^{4} T^{12} - 114 p^{5} T^{13} - 63 p^{6} T^{14} + p^{8} T^{16} \)
41 \( ( 1 + 6 T + 127 T^{2} + 453 T^{3} + 6650 T^{4} + 453 p T^{5} + 127 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
43 \( ( 1 - T + 144 T^{2} - 50 T^{3} + 8638 T^{4} - 50 p T^{5} + 144 p^{2} T^{6} - p^{3} T^{7} + p^{4} T^{8} )^{2} \)
47 \( 1 + 9 T - 67 T^{2} - 660 T^{3} + 2564 T^{4} + 7452 T^{5} - 311076 T^{6} + 354939 T^{7} + 24590333 T^{8} + 354939 p T^{9} - 311076 p^{2} T^{10} + 7452 p^{3} T^{11} + 2564 p^{4} T^{12} - 660 p^{5} T^{13} - 67 p^{6} T^{14} + 9 p^{7} T^{15} + p^{8} T^{16} \)
53 \( 1 - 7 T - 158 T^{2} + 729 T^{3} + 18893 T^{4} - 54478 T^{5} - 1436103 T^{6} + 995821 T^{7} + 90249700 T^{8} + 995821 p T^{9} - 1436103 p^{2} T^{10} - 54478 p^{3} T^{11} + 18893 p^{4} T^{12} + 729 p^{5} T^{13} - 158 p^{6} T^{14} - 7 p^{7} T^{15} + p^{8} T^{16} \)
59 \( 1 + 4 T - 21 T^{2} - 738 T^{3} - 6108 T^{4} - 3112 T^{5} + 138210 T^{6} + 1929881 T^{7} + 10657612 T^{8} + 1929881 p T^{9} + 138210 p^{2} T^{10} - 3112 p^{3} T^{11} - 6108 p^{4} T^{12} - 738 p^{5} T^{13} - 21 p^{6} T^{14} + 4 p^{7} T^{15} + p^{8} T^{16} \)
61 \( 1 + 25 T + 196 T^{2} + 1097 T^{3} + 19941 T^{4} + 171360 T^{5} + 257114 T^{6} + 4239618 T^{7} + 85475992 T^{8} + 4239618 p T^{9} + 257114 p^{2} T^{10} + 171360 p^{3} T^{11} + 19941 p^{4} T^{12} + 1097 p^{5} T^{13} + 196 p^{6} T^{14} + 25 p^{7} T^{15} + p^{8} T^{16} \)
67 \( 1 + 30 T + 5 p T^{2} + 2816 T^{3} + 39697 T^{4} + 415264 T^{5} + 2662719 T^{6} + 27218576 T^{7} + 300754815 T^{8} + 27218576 p T^{9} + 2662719 p^{2} T^{10} + 415264 p^{3} T^{11} + 39697 p^{4} T^{12} + 2816 p^{5} T^{13} + 5 p^{7} T^{14} + 30 p^{7} T^{15} + p^{8} T^{16} \)
71 \( ( 1 + 11 T + 194 T^{2} + 1324 T^{3} + 16844 T^{4} + 1324 p T^{5} + 194 p^{2} T^{6} + 11 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
73 \( 1 - 4 T - 177 T^{2} + 378 T^{3} + 16890 T^{4} - 8478 T^{5} - 1265668 T^{6} + 148369 T^{7} + 87542238 T^{8} + 148369 p T^{9} - 1265668 p^{2} T^{10} - 8478 p^{3} T^{11} + 16890 p^{4} T^{12} + 378 p^{5} T^{13} - 177 p^{6} T^{14} - 4 p^{7} T^{15} + p^{8} T^{16} \)
79 \( 1 - 7 T + 6 T^{2} + 609 T^{3} - 7809 T^{4} + 35112 T^{5} + 213797 T^{6} - 5183759 T^{7} + 23372886 T^{8} - 5183759 p T^{9} + 213797 p^{2} T^{10} + 35112 p^{3} T^{11} - 7809 p^{4} T^{12} + 609 p^{5} T^{13} + 6 p^{6} T^{14} - 7 p^{7} T^{15} + p^{8} T^{16} \)
83 \( ( 1 - 29 T + 560 T^{2} - 7232 T^{3} + 75754 T^{4} - 7232 p T^{5} + 560 p^{2} T^{6} - 29 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
89 \( 1 - 9 T - 128 T^{2} - 549 T^{3} + 20701 T^{4} + 107280 T^{5} - 329006 T^{6} - 7780266 T^{7} - 45486752 T^{8} - 7780266 p T^{9} - 329006 p^{2} T^{10} + 107280 p^{3} T^{11} + 20701 p^{4} T^{12} - 549 p^{5} T^{13} - 128 p^{6} T^{14} - 9 p^{7} T^{15} + p^{8} T^{16} \)
97 \( ( 1 + 4 T + 192 T^{2} - 412 T^{3} + 15886 T^{4} - 412 p T^{5} + 192 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.81715834443573674442217148296, −3.80307485592881464319147233018, −3.67109553359806975733135796343, −3.61751386164799039522143809451, −3.56064257024323296044012618605, −3.39161517323223663160203696338, −3.08211060492443229169983418126, −3.03442903562607318736737500387, −2.87355851524272039968186743673, −2.79901954889025610213546905222, −2.72186093701780133438480731575, −2.69159219257094861740908904828, −2.60513839474922914792990708937, −2.43304984964055521537650213481, −2.18196983713344862654420760855, −2.00973458047065826403460889663, −1.93777651563857625830458734048, −1.74960265600451240028690125583, −1.31557516800717089364775772029, −1.29979023278873495490275978908, −1.16334916977505020075731593821, −0.75525348140570379484882994208, −0.42607580657531698654633377937, −0.32535476866388621563466925221, −0.28054824664493577318026899242, 0.28054824664493577318026899242, 0.32535476866388621563466925221, 0.42607580657531698654633377937, 0.75525348140570379484882994208, 1.16334916977505020075731593821, 1.29979023278873495490275978908, 1.31557516800717089364775772029, 1.74960265600451240028690125583, 1.93777651563857625830458734048, 2.00973458047065826403460889663, 2.18196983713344862654420760855, 2.43304984964055521537650213481, 2.60513839474922914792990708937, 2.69159219257094861740908904828, 2.72186093701780133438480731575, 2.79901954889025610213546905222, 2.87355851524272039968186743673, 3.03442903562607318736737500387, 3.08211060492443229169983418126, 3.39161517323223663160203696338, 3.56064257024323296044012618605, 3.61751386164799039522143809451, 3.67109553359806975733135796343, 3.80307485592881464319147233018, 3.81715834443573674442217148296

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.