Properties

Degree $4$
Conductor $2286144$
Sign $1$
Motivic weight $1$
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 4·7-s − 2·11-s + 10·13-s − 6·17-s + 4·19-s − 6·23-s + 5·25-s + 12·29-s + 7·31-s + 16·35-s − 7·37-s + 4·41-s − 14·43-s + 2·47-s + 9·49-s − 6·53-s − 8·55-s − 6·59-s + 9·61-s + 40·65-s + 7·67-s − 16·71-s − 10·73-s − 8·77-s − 79-s + 28·83-s + ⋯
L(s)  = 1  + 1.78·5-s + 1.51·7-s − 0.603·11-s + 2.77·13-s − 1.45·17-s + 0.917·19-s − 1.25·23-s + 25-s + 2.22·29-s + 1.25·31-s + 2.70·35-s − 1.15·37-s + 0.624·41-s − 2.13·43-s + 0.291·47-s + 9/7·49-s − 0.824·53-s − 1.07·55-s − 0.781·59-s + 1.15·61-s + 4.96·65-s + 0.855·67-s − 1.89·71-s − 1.17·73-s − 0.911·77-s − 0.112·79-s + 3.07·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2286144\)    =    \(2^{6} \cdot 3^{6} \cdot 7^{2}\)
Sign: $1$
Motivic weight: \(1\)
Character: induced by $\chi_{1512} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2286144,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.915870030\)
\(L(\frac12)\) \(\approx\) \(4.915870030\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2^2$ \( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 2 T - 7 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 4 T - 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 7 T + 12 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 2 T - 43 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 6 T - 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 6 T - 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 9 T + 20 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 7 T - 18 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2^2$ \( 1 + T - 78 T^{2} + p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 12 T + 55 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01700425014403252979344240697, −9.188433984246528729469153003989, −8.720055336694627882912932059129, −8.508385544461882300850942521957, −8.196760255591124082067706619074, −7.984971492146270062353283586741, −7.12570850932302715700973426988, −6.73858085658448579324079350761, −6.27925044411713887298499256319, −5.87286814712076321713532441905, −5.84135779008309579375284520123, −5.09278638966737615585640766534, −4.67041488364279331821365587351, −4.43713399790362895547859330853, −3.63483560584070024617651022378, −3.14538576831699884524775159952, −2.43833320478230488071768253303, −1.87784844181740957651219037248, −1.55869997595917107007756803860, −0.955945925061884059852400536299, 0.955945925061884059852400536299, 1.55869997595917107007756803860, 1.87784844181740957651219037248, 2.43833320478230488071768253303, 3.14538576831699884524775159952, 3.63483560584070024617651022378, 4.43713399790362895547859330853, 4.67041488364279331821365587351, 5.09278638966737615585640766534, 5.84135779008309579375284520123, 5.87286814712076321713532441905, 6.27925044411713887298499256319, 6.73858085658448579324079350761, 7.12570850932302715700973426988, 7.984971492146270062353283586741, 8.196760255591124082067706619074, 8.508385544461882300850942521957, 8.720055336694627882912932059129, 9.188433984246528729469153003989, 10.01700425014403252979344240697

Graph of the $Z$-function along the critical line