| L(s) = 1 | + (0.468 − 0.811i)5-s + (−0.5 − 0.866i)7-s + (2.48 + 4.30i)11-s + (−0.622 + 1.07i)13-s − 5.22·17-s + 5.18·19-s + (−1.00 + 1.73i)23-s + (2.06 + 3.57i)25-s + (3.43 + 5.95i)29-s + (2.86 − 4.96i)31-s − 0.936·35-s + 9.73·37-s + (−5.73 + 9.93i)41-s + (−4.80 − 8.31i)43-s + (−0.984 − 1.70i)47-s + ⋯ |
| L(s) = 1 | + (0.209 − 0.362i)5-s + (−0.188 − 0.327i)7-s + (0.749 + 1.29i)11-s + (−0.172 + 0.298i)13-s − 1.26·17-s + 1.18·19-s + (−0.209 + 0.362i)23-s + (0.412 + 0.714i)25-s + (0.638 + 1.10i)29-s + (0.514 − 0.891i)31-s − 0.158·35-s + 1.59·37-s + (−0.895 + 1.55i)41-s + (−0.732 − 1.26i)43-s + (−0.143 − 0.248i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.847 - 0.530i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.847 - 0.530i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.708024389\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.708024389\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| good | 5 | \( 1 + (-0.468 + 0.811i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.48 - 4.30i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.622 - 1.07i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 5.22T + 17T^{2} \) |
| 19 | \( 1 - 5.18T + 19T^{2} \) |
| 23 | \( 1 + (1.00 - 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.43 - 5.95i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.86 + 4.96i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 9.73T + 37T^{2} \) |
| 41 | \( 1 + (5.73 - 9.93i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.80 + 8.31i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.984 + 1.70i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 7.63T + 53T^{2} \) |
| 59 | \( 1 + (-2.43 + 4.22i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.52 - 2.63i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.573 + 0.994i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.83T + 71T^{2} \) |
| 73 | \( 1 - 6.10T + 73T^{2} \) |
| 79 | \( 1 + (-6.05 - 10.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.431 + 0.747i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 10.8T + 89T^{2} \) |
| 97 | \( 1 + (3.78 + 6.55i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.573316982286201455747000643435, −8.928764385111143553635580367660, −7.905816748288364066892018461564, −6.97046463647150549283342725249, −6.55091947615378570041072472047, −5.23512663453737692081622393557, −4.56989411591478251716037249628, −3.64905913344268348597026754699, −2.32272371405387009023909993638, −1.20574431645130938130159315764,
0.78599749546763811495601008518, 2.40652514341558369044263041208, 3.22568286629598781079894164794, 4.29823388869312648269855971711, 5.35691597851772003676891873339, 6.32304634397377853303127442268, 6.68999733835832769935976752948, 7.952924593307225243710296331546, 8.620577943987157175886525651615, 9.361610171112712972186416768119