Properties

Degree 2
Conductor $ 2^{3} \cdot 3^{3} \cdot 7 $
Sign $0.0460 - 0.998i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.725 − 1.21i)2-s + (−0.946 − 1.76i)4-s − 3.06i·5-s − 7-s + (−2.82 − 0.130i)8-s + (−3.72 − 2.22i)10-s + 5.80i·11-s + 3.52i·13-s + (−0.725 + 1.21i)14-s + (−2.20 + 3.33i)16-s − 6.79·17-s − 5.28i·19-s + (−5.40 + 2.90i)20-s + (7.04 + 4.21i)22-s − 5.65·23-s + ⋯
L(s)  = 1  + (0.513 − 0.858i)2-s + (−0.473 − 0.880i)4-s − 1.37i·5-s − 0.377·7-s + (−0.998 − 0.0460i)8-s + (−1.17 − 0.704i)10-s + 1.75i·11-s + 0.977i·13-s + (−0.193 + 0.324i)14-s + (−0.552 + 0.833i)16-s − 1.64·17-s − 1.21i·19-s + (−1.20 + 0.649i)20-s + (1.50 + 0.898i)22-s − 1.17·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0460 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0460 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $0.0460 - 0.998i$
motivic weight  =  \(1\)
character  :  $\chi_{1512} (757, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 1512,\ (\ :1/2),\ 0.0460 - 0.998i)$
$L(1)$  $\approx$  $0.1184620128$
$L(\frac12)$  $\approx$  $0.1184620128$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.725 + 1.21i)T \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + 3.06iT - 5T^{2} \)
11 \( 1 - 5.80iT - 11T^{2} \)
13 \( 1 - 3.52iT - 13T^{2} \)
17 \( 1 + 6.79T + 17T^{2} \)
19 \( 1 + 5.28iT - 19T^{2} \)
23 \( 1 + 5.65T + 23T^{2} \)
29 \( 1 + 1.21iT - 29T^{2} \)
31 \( 1 - 0.107T + 31T^{2} \)
37 \( 1 - 4.90iT - 37T^{2} \)
41 \( 1 + 11.6T + 41T^{2} \)
43 \( 1 - 1.85iT - 43T^{2} \)
47 \( 1 - 6.76T + 47T^{2} \)
53 \( 1 + 11.4iT - 53T^{2} \)
59 \( 1 - 7.85iT - 59T^{2} \)
61 \( 1 + 12.0iT - 61T^{2} \)
67 \( 1 - 6.66iT - 67T^{2} \)
71 \( 1 - 1.98T + 71T^{2} \)
73 \( 1 + 6.52T + 73T^{2} \)
79 \( 1 - 2.30T + 79T^{2} \)
83 \( 1 + 12.5iT - 83T^{2} \)
89 \( 1 + 7.79T + 89T^{2} \)
97 \( 1 - 4.05T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.083402557536998798050122919370, −8.466014067847302579604939413661, −7.03175251654539553795829989697, −6.37400702047442535734435796096, −5.02488098819117172964312038582, −4.62108387489817739614326136064, −3.98323228024692222456455426578, −2.35798399638205751348563599018, −1.66527094996962878284461031365, −0.03656907384532636502011256172, 2.55251614592174732078129880797, 3.37118442763242289718760431854, 4.00348223090335255812618213608, 5.50533533797693189746904915808, 6.09473993179319413449830938337, 6.65054396248127342666597807047, 7.56416212253025386828855788185, 8.309802189777002174637938767698, 8.994226414793295065229619430678, 10.21914333617463160974777658906

Graph of the $Z$-function along the critical line