Properties

Label 2-150-25.21-c5-0-13
Degree $2$
Conductor $150$
Sign $0.838 + 0.544i$
Analytic cond. $24.0575$
Root an. cond. $4.90485$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.23 + 3.80i)2-s + (−7.28 − 5.29i)3-s + (−12.9 − 9.40i)4-s + (−5.54 + 55.6i)5-s + (29.1 − 21.1i)6-s − 223.·7-s + (51.7 − 37.6i)8-s + (25.0 + 77.0i)9-s + (−204. − 89.8i)10-s + (−72.9 + 224. i)11-s + (44.4 + 136. i)12-s + (31.4 + 96.7i)13-s + (275. − 848. i)14-s + (334. − 375. i)15-s + (79.1 + 243. i)16-s + (−174. + 126. i)17-s + ⋯
L(s)  = 1  + (−0.218 + 0.672i)2-s + (−0.467 − 0.339i)3-s + (−0.404 − 0.293i)4-s + (−0.0992 + 0.995i)5-s + (0.330 − 0.239i)6-s − 1.72·7-s + (0.286 − 0.207i)8-s + (0.103 + 0.317i)9-s + (−0.647 − 0.284i)10-s + (−0.181 + 0.559i)11-s + (0.0892 + 0.274i)12-s + (0.0515 + 0.158i)13-s + (0.376 − 1.15i)14-s + (0.384 − 0.431i)15-s + (0.0772 + 0.237i)16-s + (−0.146 + 0.106i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.838 + 0.544i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.838 + 0.544i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $0.838 + 0.544i$
Analytic conductor: \(24.0575\)
Root analytic conductor: \(4.90485\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :5/2),\ 0.838 + 0.544i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4244548038\)
\(L(\frac12)\) \(\approx\) \(0.4244548038\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.23 - 3.80i)T \)
3 \( 1 + (7.28 + 5.29i)T \)
5 \( 1 + (5.54 - 55.6i)T \)
good7 \( 1 + 223.T + 1.68e4T^{2} \)
11 \( 1 + (72.9 - 224. i)T + (-1.30e5 - 9.46e4i)T^{2} \)
13 \( 1 + (-31.4 - 96.7i)T + (-3.00e5 + 2.18e5i)T^{2} \)
17 \( 1 + (174. - 126. i)T + (4.38e5 - 1.35e6i)T^{2} \)
19 \( 1 + (1.64e3 - 1.19e3i)T + (7.65e5 - 2.35e6i)T^{2} \)
23 \( 1 + (-1.22e3 + 3.76e3i)T + (-5.20e6 - 3.78e6i)T^{2} \)
29 \( 1 + (-3.24e3 - 2.35e3i)T + (6.33e6 + 1.95e7i)T^{2} \)
31 \( 1 + (-3.88e3 + 2.82e3i)T + (8.84e6 - 2.72e7i)T^{2} \)
37 \( 1 + (3.19e3 + 9.82e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
41 \( 1 + (729. + 2.24e3i)T + (-9.37e7 + 6.80e7i)T^{2} \)
43 \( 1 - 1.94e4T + 1.47e8T^{2} \)
47 \( 1 + (5.05e3 + 3.67e3i)T + (7.08e7 + 2.18e8i)T^{2} \)
53 \( 1 + (-2.17e4 - 1.57e4i)T + (1.29e8 + 3.97e8i)T^{2} \)
59 \( 1 + (3.10e3 + 9.56e3i)T + (-5.78e8 + 4.20e8i)T^{2} \)
61 \( 1 + (1.51e4 - 4.65e4i)T + (-6.83e8 - 4.96e8i)T^{2} \)
67 \( 1 + (-5.02e4 + 3.65e4i)T + (4.17e8 - 1.28e9i)T^{2} \)
71 \( 1 + (3.08e4 + 2.24e4i)T + (5.57e8 + 1.71e9i)T^{2} \)
73 \( 1 + (-3.14e3 + 9.68e3i)T + (-1.67e9 - 1.21e9i)T^{2} \)
79 \( 1 + (7.93e4 + 5.76e4i)T + (9.50e8 + 2.92e9i)T^{2} \)
83 \( 1 + (3.20e4 - 2.32e4i)T + (1.21e9 - 3.74e9i)T^{2} \)
89 \( 1 + (-2.84e4 + 8.75e4i)T + (-4.51e9 - 3.28e9i)T^{2} \)
97 \( 1 + (4.28e4 + 3.11e4i)T + (2.65e9 + 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.27042350692253247009954539376, −10.63866711866721063422880753376, −10.13446190308132711178663813766, −8.866318351801009963953076619342, −7.40000210972793860197459292449, −6.58837802786579790226687363304, −6.00271298313598064200498062872, −4.13674669375250820325296655200, −2.57045418563704656093119402554, −0.23079167416464261254757892103, 0.836271972223211546687587138674, 2.94609814061400069866345727278, 4.16234665528931911498300647715, 5.49574416082671822300978923592, 6.71176267474274027356075913181, 8.409916367886740081327876891987, 9.349742539947171676945839492683, 10.05462929453686087055412567619, 11.20711265123068829261097043503, 12.21846736079366827898104577463

Graph of the $Z$-function along the critical line