Properties

Label 2-150-1.1-c5-0-0
Degree $2$
Conductor $150$
Sign $1$
Analytic cond. $24.0575$
Root an. cond. $4.90485$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 9·3-s + 16·4-s + 36·6-s − 233.·7-s − 64·8-s + 81·9-s − 89.7·11-s − 144·12-s + 209.·13-s + 934.·14-s + 256·16-s − 226.·17-s − 324·18-s − 2.18e3·19-s + 2.10e3·21-s + 358.·22-s − 4.29e3·23-s + 576·24-s − 836.·26-s − 729·27-s − 3.73e3·28-s + 3.55e3·29-s + 6.90e3·31-s − 1.02e3·32-s + 807.·33-s + 907.·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.408·6-s − 1.80·7-s − 0.353·8-s + 0.333·9-s − 0.223·11-s − 0.288·12-s + 0.343·13-s + 1.27·14-s + 0.250·16-s − 0.190·17-s − 0.235·18-s − 1.38·19-s + 1.04·21-s + 0.158·22-s − 1.69·23-s + 0.204·24-s − 0.242·26-s − 0.192·27-s − 0.901·28-s + 0.785·29-s + 1.28·31-s − 0.176·32-s + 0.129·33-s + 0.134·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(24.0575\)
Root analytic conductor: \(4.90485\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5566613547\)
\(L(\frac12)\) \(\approx\) \(0.5566613547\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 + 9T \)
5 \( 1 \)
good7 \( 1 + 233.T + 1.68e4T^{2} \)
11 \( 1 + 89.7T + 1.61e5T^{2} \)
13 \( 1 - 209.T + 3.71e5T^{2} \)
17 \( 1 + 226.T + 1.41e6T^{2} \)
19 \( 1 + 2.18e3T + 2.47e6T^{2} \)
23 \( 1 + 4.29e3T + 6.43e6T^{2} \)
29 \( 1 - 3.55e3T + 2.05e7T^{2} \)
31 \( 1 - 6.90e3T + 2.86e7T^{2} \)
37 \( 1 - 5.43e3T + 6.93e7T^{2} \)
41 \( 1 - 6.48e3T + 1.15e8T^{2} \)
43 \( 1 - 2.19e4T + 1.47e8T^{2} \)
47 \( 1 - 7.71e3T + 2.29e8T^{2} \)
53 \( 1 + 1.27e4T + 4.18e8T^{2} \)
59 \( 1 + 4.45e4T + 7.14e8T^{2} \)
61 \( 1 - 1.15e4T + 8.44e8T^{2} \)
67 \( 1 - 3.96e3T + 1.35e9T^{2} \)
71 \( 1 - 4.64e4T + 1.80e9T^{2} \)
73 \( 1 - 6.15e4T + 2.07e9T^{2} \)
79 \( 1 + 2.78e4T + 3.07e9T^{2} \)
83 \( 1 - 5.09e4T + 3.93e9T^{2} \)
89 \( 1 - 5.13e3T + 5.58e9T^{2} \)
97 \( 1 - 8.84e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17436017767392372868996157004, −10.81367759770916395760676759348, −10.08159364564766380779443747136, −9.209030885003342525843328707388, −7.939026226457516721016722079514, −6.49980192183176676728689764585, −6.09389312706301102454665403602, −4.08163216225521999895733547917, −2.53407190524941987297917211445, −0.53280970123020234144907439063, 0.53280970123020234144907439063, 2.53407190524941987297917211445, 4.08163216225521999895733547917, 6.09389312706301102454665403602, 6.49980192183176676728689764585, 7.939026226457516721016722079514, 9.209030885003342525843328707388, 10.08159364564766380779443747136, 10.81367759770916395760676759348, 12.17436017767392372868996157004

Graph of the $Z$-function along the critical line