Properties

Label 2-150-25.8-c2-0-2
Degree $2$
Conductor $150$
Sign $0.940 + 0.339i$
Analytic cond. $4.08720$
Root an. cond. $2.02168$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.26 − 0.642i)2-s + (−1.71 − 0.270i)3-s + (1.17 + 1.61i)4-s + (−4.55 + 2.05i)5-s + (1.98 + 1.43i)6-s + (3.78 − 3.78i)7-s + (−0.442 − 2.79i)8-s + (2.85 + 0.927i)9-s + (7.06 + 0.336i)10-s + (3.18 + 9.81i)11-s + (−1.57 − 3.08i)12-s + (15.1 − 7.70i)13-s + (−7.19 + 2.33i)14-s + (8.35 − 2.28i)15-s + (−1.23 + 3.80i)16-s + (21.2 − 3.36i)17-s + ⋯
L(s)  = 1  + (−0.630 − 0.321i)2-s + (−0.570 − 0.0903i)3-s + (0.293 + 0.404i)4-s + (−0.911 + 0.411i)5-s + (0.330 + 0.239i)6-s + (0.540 − 0.540i)7-s + (−0.0553 − 0.349i)8-s + (0.317 + 0.103i)9-s + (0.706 + 0.0336i)10-s + (0.289 + 0.892i)11-s + (−0.131 − 0.257i)12-s + (1.16 − 0.592i)13-s + (−0.514 + 0.167i)14-s + (0.556 − 0.152i)15-s + (−0.0772 + 0.237i)16-s + (1.24 − 0.197i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.940 + 0.339i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.940 + 0.339i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $0.940 + 0.339i$
Analytic conductor: \(4.08720\)
Root analytic conductor: \(2.02168\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (133, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :1),\ 0.940 + 0.339i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.850261 - 0.148805i\)
\(L(\frac12)\) \(\approx\) \(0.850261 - 0.148805i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.26 + 0.642i)T \)
3 \( 1 + (1.71 + 0.270i)T \)
5 \( 1 + (4.55 - 2.05i)T \)
good7 \( 1 + (-3.78 + 3.78i)T - 49iT^{2} \)
11 \( 1 + (-3.18 - 9.81i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-15.1 + 7.70i)T + (99.3 - 136. i)T^{2} \)
17 \( 1 + (-21.2 + 3.36i)T + (274. - 89.3i)T^{2} \)
19 \( 1 + (-5.71 + 7.86i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (-3.73 + 7.32i)T + (-310. - 427. i)T^{2} \)
29 \( 1 + (-0.300 - 0.414i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (-27.9 - 20.2i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (-27.7 - 54.4i)T + (-804. + 1.10e3i)T^{2} \)
41 \( 1 + (6.25 - 19.2i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (53.4 + 53.4i)T + 1.84e3iT^{2} \)
47 \( 1 + (-2.72 + 17.2i)T + (-2.10e3 - 682. i)T^{2} \)
53 \( 1 + (26.4 + 4.19i)T + (2.67e3 + 868. i)T^{2} \)
59 \( 1 + (48.8 + 15.8i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-27.3 - 84.0i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (-68.3 + 10.8i)T + (4.26e3 - 1.38e3i)T^{2} \)
71 \( 1 + (-100. + 73.2i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (-8.59 + 16.8i)T + (-3.13e3 - 4.31e3i)T^{2} \)
79 \( 1 + (50.3 + 69.3i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (5.02 + 31.7i)T + (-6.55e3 + 2.12e3i)T^{2} \)
89 \( 1 + (-144. + 47.0i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (1.86 - 11.7i)T + (-8.94e3 - 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.29682808557735953554945730833, −11.62546482327393990091939396299, −10.73919785772643390515577813693, −9.969579821882971505574333754587, −8.376207457357858833324796124889, −7.55890779838808099433021413142, −6.54944160054394498691275697215, −4.75443836419312332832205475003, −3.36384335239096288501257219497, −1.06547908643214914341956008715, 1.10470607220416390222243115896, 3.74449990536473104617849468351, 5.30985172717533819156870710947, 6.33145564112894711232609532108, 7.83212735353467223925286699900, 8.510059531450305106111081402430, 9.627762258504093103284118823494, 11.13253171720797440723771815172, 11.49290175397232466649361637003, 12.53559076109969600057756526586

Graph of the $Z$-function along the critical line