Properties

Label 2-150-25.13-c2-0-1
Degree $2$
Conductor $150$
Sign $0.300 - 0.953i$
Analytic cond. $4.08720$
Root an. cond. $2.02168$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.39 − 0.221i)2-s + (−0.786 + 1.54i)3-s + (1.90 − 0.618i)4-s + (1.86 + 4.64i)5-s + (−0.756 + 2.32i)6-s + (−6.90 + 6.90i)7-s + (2.52 − 1.28i)8-s + (−1.76 − 2.42i)9-s + (3.62 + 6.07i)10-s + (7.27 + 5.28i)11-s + (−0.541 + 3.42i)12-s + (2.54 + 0.402i)13-s + (−8.11 + 11.1i)14-s + (−8.62 − 0.776i)15-s + (3.23 − 2.35i)16-s + (−10.3 − 20.2i)17-s + ⋯
L(s)  = 1  + (0.698 − 0.110i)2-s + (−0.262 + 0.514i)3-s + (0.475 − 0.154i)4-s + (0.372 + 0.928i)5-s + (−0.126 + 0.388i)6-s + (−0.985 + 0.985i)7-s + (0.315 − 0.160i)8-s + (−0.195 − 0.269i)9-s + (0.362 + 0.607i)10-s + (0.660 + 0.480i)11-s + (−0.0451 + 0.285i)12-s + (0.195 + 0.0309i)13-s + (−0.579 + 0.797i)14-s + (−0.575 − 0.0517i)15-s + (0.202 − 0.146i)16-s + (−0.607 − 1.19i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.300 - 0.953i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.300 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $0.300 - 0.953i$
Analytic conductor: \(4.08720\)
Root analytic conductor: \(2.02168\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :1),\ 0.300 - 0.953i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.55341 + 1.13920i\)
\(L(\frac12)\) \(\approx\) \(1.55341 + 1.13920i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.39 + 0.221i)T \)
3 \( 1 + (0.786 - 1.54i)T \)
5 \( 1 + (-1.86 - 4.64i)T \)
good7 \( 1 + (6.90 - 6.90i)T - 49iT^{2} \)
11 \( 1 + (-7.27 - 5.28i)T + (37.3 + 115. i)T^{2} \)
13 \( 1 + (-2.54 - 0.402i)T + (160. + 52.2i)T^{2} \)
17 \( 1 + (10.3 + 20.2i)T + (-169. + 233. i)T^{2} \)
19 \( 1 + (-33.9 - 11.0i)T + (292. + 212. i)T^{2} \)
23 \( 1 + (-1.78 - 11.2i)T + (-503. + 163. i)T^{2} \)
29 \( 1 + (6.87 - 2.23i)T + (680. - 494. i)T^{2} \)
31 \( 1 + (-16.0 + 49.3i)T + (-777. - 564. i)T^{2} \)
37 \( 1 + (-10.7 + 68.0i)T + (-1.30e3 - 423. i)T^{2} \)
41 \( 1 + (2.12 - 1.54i)T + (519. - 1.59e3i)T^{2} \)
43 \( 1 + (-37.8 - 37.8i)T + 1.84e3iT^{2} \)
47 \( 1 + (75.0 + 38.2i)T + (1.29e3 + 1.78e3i)T^{2} \)
53 \( 1 + (-10.5 + 20.6i)T + (-1.65e3 - 2.27e3i)T^{2} \)
59 \( 1 + (10.2 + 14.1i)T + (-1.07e3 + 3.31e3i)T^{2} \)
61 \( 1 + (-4.45 - 3.24i)T + (1.14e3 + 3.53e3i)T^{2} \)
67 \( 1 + (-50.1 - 98.3i)T + (-2.63e3 + 3.63e3i)T^{2} \)
71 \( 1 + (0.158 + 0.489i)T + (-4.07e3 + 2.96e3i)T^{2} \)
73 \( 1 + (-7.81 - 49.3i)T + (-5.06e3 + 1.64e3i)T^{2} \)
79 \( 1 + (-95.1 + 30.9i)T + (5.04e3 - 3.66e3i)T^{2} \)
83 \( 1 + (48.4 - 24.6i)T + (4.04e3 - 5.57e3i)T^{2} \)
89 \( 1 + (-18.1 + 25.0i)T + (-2.44e3 - 7.53e3i)T^{2} \)
97 \( 1 + (32.7 + 16.6i)T + (5.53e3 + 7.61e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01473834545162943573261319000, −11.80925774106958667927341612908, −11.28980821399717211777996301292, −9.724495890331199357332257479502, −9.466004976822271303172241588500, −7.31030617340581206740814939503, −6.25110390813492019876588463493, −5.39874483580349122358436825011, −3.70450105777637194835330409970, −2.56951956420132603973224626747, 1.14918461324200968690235933707, 3.38841233089326343798391066579, 4.76929078514690426953566150122, 6.11771460331514973084060137192, 6.87734750777576869393578268014, 8.273989096003675374856960207672, 9.525992726499789923907796949263, 10.71205739964962876160928117518, 11.90105141027003598789130038762, 12.76728600630182284107761066065

Graph of the $Z$-function along the critical line