Properties

Label 2-150-25.3-c2-0-0
Degree $2$
Conductor $150$
Sign $-0.874 - 0.484i$
Analytic cond. $4.08720$
Root an. cond. $2.02168$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 + 1.26i)2-s + (−0.270 − 1.71i)3-s + (−1.17 + 1.61i)4-s + (−3.75 + 3.30i)5-s + (1.98 − 1.43i)6-s + (−5.04 + 5.04i)7-s + (−2.79 − 0.442i)8-s + (−2.85 + 0.927i)9-s + (−6.57 − 2.61i)10-s + (−1.94 + 5.99i)11-s + (3.08 + 1.57i)12-s + (−0.134 + 0.264i)13-s + (−9.60 − 3.12i)14-s + (6.66 + 5.53i)15-s + (−1.23 − 3.80i)16-s + (−3.88 + 24.5i)17-s + ⋯
L(s)  = 1  + (0.321 + 0.630i)2-s + (−0.0903 − 0.570i)3-s + (−0.293 + 0.404i)4-s + (−0.751 + 0.660i)5-s + (0.330 − 0.239i)6-s + (−0.721 + 0.721i)7-s + (−0.349 − 0.0553i)8-s + (−0.317 + 0.103i)9-s + (−0.657 − 0.261i)10-s + (−0.176 + 0.544i)11-s + (0.257 + 0.131i)12-s + (−0.0103 + 0.0203i)13-s + (−0.686 − 0.222i)14-s + (0.444 + 0.368i)15-s + (−0.0772 − 0.237i)16-s + (−0.228 + 1.44i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.874 - 0.484i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.874 - 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-0.874 - 0.484i$
Analytic conductor: \(4.08720\)
Root analytic conductor: \(2.02168\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :1),\ -0.874 - 0.484i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.212179 + 0.821183i\)
\(L(\frac12)\) \(\approx\) \(0.212179 + 0.821183i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.642 - 1.26i)T \)
3 \( 1 + (0.270 + 1.71i)T \)
5 \( 1 + (3.75 - 3.30i)T \)
good7 \( 1 + (5.04 - 5.04i)T - 49iT^{2} \)
11 \( 1 + (1.94 - 5.99i)T + (-97.8 - 71.1i)T^{2} \)
13 \( 1 + (0.134 - 0.264i)T + (-99.3 - 136. i)T^{2} \)
17 \( 1 + (3.88 - 24.5i)T + (-274. - 89.3i)T^{2} \)
19 \( 1 + (3.92 + 5.40i)T + (-111. + 343. i)T^{2} \)
23 \( 1 + (-0.779 + 0.397i)T + (310. - 427. i)T^{2} \)
29 \( 1 + (-0.149 + 0.205i)T + (-259. - 799. i)T^{2} \)
31 \( 1 + (-31.6 + 23.0i)T + (296. - 913. i)T^{2} \)
37 \( 1 + (10.5 + 5.36i)T + (804. + 1.10e3i)T^{2} \)
41 \( 1 + (-13.4 - 41.3i)T + (-1.35e3 + 988. i)T^{2} \)
43 \( 1 + (9.20 + 9.20i)T + 1.84e3iT^{2} \)
47 \( 1 + (-27.3 + 4.32i)T + (2.10e3 - 682. i)T^{2} \)
53 \( 1 + (-16.2 - 102. i)T + (-2.67e3 + 868. i)T^{2} \)
59 \( 1 + (-19.5 + 6.35i)T + (2.81e3 - 2.04e3i)T^{2} \)
61 \( 1 + (-24.2 + 74.7i)T + (-3.01e3 - 2.18e3i)T^{2} \)
67 \( 1 + (14.1 - 89.0i)T + (-4.26e3 - 1.38e3i)T^{2} \)
71 \( 1 + (-70.3 - 51.1i)T + (1.55e3 + 4.79e3i)T^{2} \)
73 \( 1 + (126. - 64.5i)T + (3.13e3 - 4.31e3i)T^{2} \)
79 \( 1 + (-68.2 + 93.8i)T + (-1.92e3 - 5.93e3i)T^{2} \)
83 \( 1 + (87.8 + 13.9i)T + (6.55e3 + 2.12e3i)T^{2} \)
89 \( 1 + (141. + 46.0i)T + (6.40e3 + 4.65e3i)T^{2} \)
97 \( 1 + (56.9 - 9.02i)T + (8.94e3 - 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.04868714909808750654754037262, −12.43279389723432428141972210813, −11.45604142872513596625152054843, −10.17650120499188852729663644204, −8.744783962093152233988065350058, −7.76898291674040975543197051184, −6.71881666824601388482853968820, −5.91376296091282467488531039568, −4.20012524893392944854305834293, −2.70334564390253342175254967138, 0.48975141988223531352117961446, 3.16298061032108540581770115623, 4.23147903583388293792576443492, 5.32645515504951965082244175351, 6.94865497185856171114337803356, 8.413505659199993296504134836599, 9.461529420232078302304694581699, 10.42528247325519627640730252323, 11.41056356881433102337663179529, 12.24349001131059602820385696756

Graph of the $Z$-function along the critical line