Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5^{2} $
Sign $0.830 - 0.556i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.951 + 0.309i)2-s + (−0.587 + 0.809i)3-s + (0.809 + 0.587i)4-s + (1.97 − 1.03i)5-s + (−0.809 + 0.587i)6-s − 0.329i·7-s + (0.587 + 0.809i)8-s + (−0.309 − 0.951i)9-s + (2.20 − 0.377i)10-s + (−1.55 + 4.78i)11-s + (−0.951 + 0.309i)12-s + (−0.458 + 0.148i)13-s + (0.101 − 0.313i)14-s + (−0.322 + 2.21i)15-s + (0.309 + 0.951i)16-s + (−3.98 − 5.49i)17-s + ⋯
L(s)  = 1  + (0.672 + 0.218i)2-s + (−0.339 + 0.467i)3-s + (0.404 + 0.293i)4-s + (0.885 − 0.465i)5-s + (−0.330 + 0.239i)6-s − 0.124i·7-s + (0.207 + 0.286i)8-s + (−0.103 − 0.317i)9-s + (0.696 − 0.119i)10-s + (−0.468 + 1.44i)11-s + (−0.274 + 0.0892i)12-s + (−0.127 + 0.0413i)13-s + (0.0271 − 0.0837i)14-s + (−0.0832 + 0.571i)15-s + (0.0772 + 0.237i)16-s + (−0.967 − 1.33i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.830 - 0.556i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.830 - 0.556i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
\( \varepsilon \)  =  $0.830 - 0.556i$
motivic weight  =  \(1\)
character  :  $\chi_{150} (79, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 150,\ (\ :1/2),\ 0.830 - 0.556i)$
$L(1)$  $\approx$  $1.49325 + 0.454014i$
$L(\frac12)$  $\approx$  $1.49325 + 0.454014i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.951 - 0.309i)T \)
3 \( 1 + (0.587 - 0.809i)T \)
5 \( 1 + (-1.97 + 1.03i)T \)
good7 \( 1 + 0.329iT - 7T^{2} \)
11 \( 1 + (1.55 - 4.78i)T + (-8.89 - 6.46i)T^{2} \)
13 \( 1 + (0.458 - 0.148i)T + (10.5 - 7.64i)T^{2} \)
17 \( 1 + (3.98 + 5.49i)T + (-5.25 + 16.1i)T^{2} \)
19 \( 1 + (-4.40 + 3.19i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 + (6.18 + 2.00i)T + (18.6 + 13.5i)T^{2} \)
29 \( 1 + (4.87 + 3.53i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (1.06 - 0.775i)T + (9.57 - 29.4i)T^{2} \)
37 \( 1 + (0.741 - 0.241i)T + (29.9 - 21.7i)T^{2} \)
41 \( 1 + (-3.86 - 11.9i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 - 2.47iT - 43T^{2} \)
47 \( 1 + (2.57 - 3.54i)T + (-14.5 - 44.6i)T^{2} \)
53 \( 1 + (-0.990 + 1.36i)T + (-16.3 - 50.4i)T^{2} \)
59 \( 1 + (0.313 + 0.966i)T + (-47.7 + 34.6i)T^{2} \)
61 \( 1 + (-1.29 + 3.98i)T + (-49.3 - 35.8i)T^{2} \)
67 \( 1 + (1.84 + 2.54i)T + (-20.7 + 63.7i)T^{2} \)
71 \( 1 + (4.62 + 3.35i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (2.79 + 0.909i)T + (59.0 + 42.9i)T^{2} \)
79 \( 1 + (-6.86 - 4.98i)T + (24.4 + 75.1i)T^{2} \)
83 \( 1 + (-10.1 - 13.9i)T + (-25.6 + 78.9i)T^{2} \)
89 \( 1 + (1.06 - 3.28i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (5.58 - 7.69i)T + (-29.9 - 92.2i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.19937901609202438511616609890, −12.24902699137406613551725087023, −11.25231525207314674019467233058, −9.937592161785444454364363820112, −9.316981533567339933114912359443, −7.60971292684151884602697341560, −6.45578439608469279532235131853, −5.16932412868252355270109046132, −4.48155873332314157515554019462, −2.41630060558005889507551185396, 2.00379005318336433334260222751, 3.57941304093049904094490642720, 5.61625221165410735487927697390, 5.99304371920815135935521687174, 7.38457221106242170189901786597, 8.785061690283155803530051936442, 10.28111268880460392672964373608, 10.94999638818489656162468480775, 12.00697109483912318684347441468, 13.11305728372609223959019713783

Graph of the $Z$-function along the critical line