Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 5^{2} $
Sign $0.728 + 0.684i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 − 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (1.80 + 1.31i)5-s + (−0.309 + 0.951i)6-s + 2.61·7-s + (0.309 − 0.951i)8-s + (−0.809 + 0.587i)9-s + (−0.690 − 2.12i)10-s + (−2.92 − 2.12i)11-s + (0.809 − 0.587i)12-s + (5.23 − 3.80i)13-s + (−2.11 − 1.53i)14-s + (0.690 − 2.12i)15-s + (−0.809 + 0.587i)16-s + (0.381 − 1.17i)17-s + ⋯
L(s)  = 1  + (−0.572 − 0.415i)2-s + (−0.178 − 0.549i)3-s + (0.154 + 0.475i)4-s + (0.809 + 0.587i)5-s + (−0.126 + 0.388i)6-s + 0.989·7-s + (0.109 − 0.336i)8-s + (−0.269 + 0.195i)9-s + (−0.218 − 0.672i)10-s + (−0.882 − 0.641i)11-s + (0.233 − 0.169i)12-s + (1.45 − 1.05i)13-s + (−0.566 − 0.411i)14-s + (0.178 − 0.549i)15-s + (−0.202 + 0.146i)16-s + (0.0926 − 0.285i)17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
\( \varepsilon \)  =  $0.728 + 0.684i$
motivic weight  =  \(1\)
character  :  $\chi_{150} (91, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 150,\ (\ :1/2),\ 0.728 + 0.684i)$
$L(1)$  $\approx$  $0.904965 - 0.358301i$
$L(\frac12)$  $\approx$  $0.904965 - 0.358301i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 + (0.809 + 0.587i)T \)
3 \( 1 + (0.309 + 0.951i)T \)
5 \( 1 + (-1.80 - 1.31i)T \)
good7 \( 1 - 2.61T + 7T^{2} \)
11 \( 1 + (2.92 + 2.12i)T + (3.39 + 10.4i)T^{2} \)
13 \( 1 + (-5.23 + 3.80i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (-0.381 + 1.17i)T + (-13.7 - 9.99i)T^{2} \)
19 \( 1 + (1.76 - 5.42i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (3.61 + 2.62i)T + (7.10 + 21.8i)T^{2} \)
29 \( 1 + (-2.61 - 8.05i)T + (-23.4 + 17.0i)T^{2} \)
31 \( 1 + (-2.04 + 6.29i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (6.47 - 4.70i)T + (11.4 - 35.1i)T^{2} \)
41 \( 1 + (4.61 - 3.35i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + 7.70T + 43T^{2} \)
47 \( 1 + (-0.527 - 1.62i)T + (-38.0 + 27.6i)T^{2} \)
53 \( 1 + (0.645 + 1.98i)T + (-42.8 + 31.1i)T^{2} \)
59 \( 1 + (-2.92 + 2.12i)T + (18.2 - 56.1i)T^{2} \)
61 \( 1 + (2.23 + 1.62i)T + (18.8 + 58.0i)T^{2} \)
67 \( 1 + (0.472 - 1.45i)T + (-54.2 - 39.3i)T^{2} \)
71 \( 1 + (-1.70 - 5.25i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (2.85 + 2.07i)T + (22.5 + 69.4i)T^{2} \)
79 \( 1 + (1.73 + 5.34i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (-0.663 + 2.04i)T + (-67.1 - 48.7i)T^{2} \)
89 \( 1 + (2.85 + 2.07i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (1.04 + 3.21i)T + (-78.4 + 57.0i)T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.94291777957140005444650409487, −11.67929241500716773058219857480, −10.71680349504585376026666136175, −10.23783206112872468197290733539, −8.466324681271482704732631883474, −7.987934348601374212507366620492, −6.44167096348144035519339700530, −5.40866165873349448291739280325, −3.17409085559959444532726007576, −1.60803581944367060453600804459, 1.84506009937836413901459379786, 4.46643273137775871687519530667, 5.44651566070203651198041074908, 6.65649491396160214640373799445, 8.235068105895055738684134390160, 8.920591426148380215598855230777, 10.02694587565254672946413257248, 10.88071608785578157117876434923, 11.91417337427523921243828018804, 13.42435542664339969136864478086

Graph of the $Z$-function along the critical line