Properties

Label 2-150-3.2-c10-0-23
Degree $2$
Conductor $150$
Sign $-0.0775 - 0.996i$
Analytic cond. $95.3035$
Root an. cond. $9.76235$
Motivic weight $10$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 22.6i·2-s + (−242. + 18.8i)3-s − 512.·4-s + (−426. − 5.48e3i)6-s − 670.·7-s − 1.15e4i·8-s + (5.83e4 − 9.12e3i)9-s + 2.33e5i·11-s + (1.24e5 − 9.64e3i)12-s − 3.07e5·13-s − 1.51e4i·14-s + 2.62e5·16-s − 6.72e5i·17-s + (2.06e5 + 1.32e6i)18-s − 1.55e6·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + (−0.996 + 0.0775i)3-s − 0.500·4-s + (−0.0548 − 0.704i)6-s − 0.0398·7-s − 0.353i·8-s + (0.987 − 0.154i)9-s + 1.44i·11-s + (0.498 − 0.0387i)12-s − 0.828·13-s − 0.0282i·14-s + 0.250·16-s − 0.473i·17-s + (0.109 + 0.698i)18-s − 0.626·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0775 - 0.996i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (-0.0775 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-0.0775 - 0.996i$
Analytic conductor: \(95.3035\)
Root analytic conductor: \(9.76235\)
Motivic weight: \(10\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :5),\ -0.0775 - 0.996i)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(0.9791418229\)
\(L(\frac12)\) \(\approx\) \(0.9791418229\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 22.6iT \)
3 \( 1 + (242. - 18.8i)T \)
5 \( 1 \)
good7 \( 1 + 670.T + 2.82e8T^{2} \)
11 \( 1 - 2.33e5iT - 2.59e10T^{2} \)
13 \( 1 + 3.07e5T + 1.37e11T^{2} \)
17 \( 1 + 6.72e5iT - 2.01e12T^{2} \)
19 \( 1 + 1.55e6T + 6.13e12T^{2} \)
23 \( 1 + 5.57e6iT - 4.14e13T^{2} \)
29 \( 1 + 2.97e7iT - 4.20e14T^{2} \)
31 \( 1 - 3.09e7T + 8.19e14T^{2} \)
37 \( 1 - 8.56e7T + 4.80e15T^{2} \)
41 \( 1 - 3.59e7iT - 1.34e16T^{2} \)
43 \( 1 - 3.66e7T + 2.16e16T^{2} \)
47 \( 1 + 3.28e7iT - 5.25e16T^{2} \)
53 \( 1 + 4.59e8iT - 1.74e17T^{2} \)
59 \( 1 + 4.88e8iT - 5.11e17T^{2} \)
61 \( 1 + 6.12e7T + 7.13e17T^{2} \)
67 \( 1 - 6.70e8T + 1.82e18T^{2} \)
71 \( 1 - 1.23e9iT - 3.25e18T^{2} \)
73 \( 1 + 1.08e9T + 4.29e18T^{2} \)
79 \( 1 + 1.86e9T + 9.46e18T^{2} \)
83 \( 1 - 1.09e9iT - 1.55e19T^{2} \)
89 \( 1 - 5.19e9iT - 3.11e19T^{2} \)
97 \( 1 - 1.07e10T + 7.37e19T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.49646362514076582608794065651, −10.10885866490591533213353263103, −9.612881871682142893139225633210, −7.990129302977186820070945912151, −7.00209119703822747643041474916, −6.21098392912219554133165199815, −4.88701230192042489337729329011, −4.33151112005138653925475220774, −2.24814984826177286342936833796, −0.62522172422253447069246005895, 0.43318599030416082252825453761, 1.47934878581305244975120821724, 2.98898371408951049657578678796, 4.29051114786963006138814285027, 5.42351706544423124354609532665, 6.37474396967391076727199709168, 7.75591532803140889154237088565, 9.003539121504625428630280068312, 10.17427529040560204773922608366, 10.95852567661519848950643904527

Graph of the $Z$-function along the critical line