Properties

Label 8-150e4-1.1-c10e4-0-1
Degree $8$
Conductor $506250000$
Sign $1$
Analytic cond. $8.24967\times 10^{7}$
Root an. cond. $9.76235$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 84·3-s − 1.02e3·4-s + 4.51e4·7-s + 8.30e4·9-s + 8.60e4·12-s − 2.75e5·13-s + 7.86e5·16-s − 1.56e6·19-s − 3.78e6·21-s − 1.83e7·27-s − 4.61e7·28-s − 2.17e7·31-s − 8.50e7·36-s + 7.10e7·37-s + 2.31e7·39-s + 4.70e8·43-s − 6.60e7·48-s + 4.27e8·49-s + 2.81e8·52-s + 1.31e8·57-s − 1.18e9·61-s + 3.74e9·63-s − 5.36e8·64-s + 2.97e8·67-s − 6.53e9·73-s + 1.60e9·76-s + 1.99e8·79-s + ⋯
L(s)  = 1  − 0.345·3-s − 4-s + 2.68·7-s + 1.40·9-s + 0.345·12-s − 0.741·13-s + 3/4·16-s − 0.633·19-s − 0.927·21-s − 1.27·27-s − 2.68·28-s − 0.760·31-s − 1.40·36-s + 1.02·37-s + 0.256·39-s + 3.20·43-s − 0.259·48-s + 1.51·49-s + 0.741·52-s + 0.219·57-s − 1.40·61-s + 3.77·63-s − 1/2·64-s + 0.220·67-s − 3.15·73-s + 0.633·76-s + 0.0647·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(11-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+5)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(8.24967\times 10^{7}\)
Root analytic conductor: \(9.76235\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 5, 5, 5, 5 ),\ 1 )\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(9.993807937\)
\(L(\frac12)\) \(\approx\) \(9.993807937\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{9} T^{2} )^{2} \)
3$C_2^2$ \( 1 + 28 p T - 938 p^{4} T^{2} + 28 p^{11} T^{3} + p^{20} T^{4} \)
5 \( 1 \)
good7$D_{4}$ \( ( 1 - 22556 T + 78482346 p T^{2} - 22556 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 4130589740 p T^{2} + \)\(12\!\cdots\!02\)\( T^{4} - 4130589740 p^{21} T^{6} + p^{40} T^{8} \)
13$D_{4}$ \( ( 1 + 137620 T + 223344855798 T^{2} + 137620 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 503008419460 T^{2} - \)\(28\!\cdots\!38\)\( T^{4} - 503008419460 p^{20} T^{6} + p^{40} T^{8} \)
19$D_{4}$ \( ( 1 + 784364 T + 11072641146486 T^{2} + 784364 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 132650537376580 T^{2} + \)\(14\!\cdots\!78\)\( p^{2} T^{4} - 132650537376580 p^{20} T^{6} + p^{40} T^{8} \)
29$D_4\times C_2$ \( 1 - 775524833463844 T^{2} + \)\(31\!\cdots\!86\)\( T^{4} - 775524833463844 p^{20} T^{6} + p^{40} T^{8} \)
31$D_{4}$ \( ( 1 + 10892924 T + 345177991175046 T^{2} + 10892924 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 - 35507084 T + 5319849690001302 T^{2} - 35507084 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 30129232679351620 T^{2} + \)\(47\!\cdots\!42\)\( T^{4} - 30129232679351620 p^{20} T^{6} + p^{40} T^{8} \)
43$D_{4}$ \( ( 1 - 5473124 p T + 50501107105165014 T^{2} - 5473124 p^{11} T^{3} + p^{20} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 185271765343089796 T^{2} + \)\(13\!\cdots\!06\)\( T^{4} - 185271765343089796 p^{20} T^{6} + p^{40} T^{8} \)
53$D_4\times C_2$ \( 1 - 486913415004520420 T^{2} + \)\(10\!\cdots\!62\)\( T^{4} - 486913415004520420 p^{20} T^{6} + p^{40} T^{8} \)
59$D_4\times C_2$ \( 1 - 1720402455795118180 T^{2} + \)\(12\!\cdots\!62\)\( T^{4} - 1720402455795118180 p^{20} T^{6} + p^{40} T^{8} \)
61$D_{4}$ \( ( 1 + 592019372 T + 1459215526973846838 T^{2} + 592019372 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 148682924 T + 3295467847639477302 T^{2} - 148682924 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 11173485987747195844 T^{2} + \)\(52\!\cdots\!86\)\( T^{4} - 11173485987747195844 p^{20} T^{6} + p^{40} T^{8} \)
73$D_{4}$ \( ( 1 + 3267134500 T + 10958748572669742438 T^{2} + 3267134500 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 99641284 T + 15267587176773126726 T^{2} - 99641284 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 56087025146752445092 T^{2} + \)\(12\!\cdots\!58\)\( T^{4} - 56087025146752445092 p^{20} T^{6} + p^{40} T^{8} \)
89$D_4\times C_2$ \( 1 - 97642754408129363140 T^{2} + \)\(41\!\cdots\!62\)\( T^{4} - 97642754408129363140 p^{20} T^{6} + p^{40} T^{8} \)
97$D_{4}$ \( ( 1 - 19588177532 T + \)\(24\!\cdots\!94\)\( T^{2} - 19588177532 p^{10} T^{3} + p^{20} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75591532803140889154237088565, −7.53850685072409387554957524605, −7.09348281082224404867007563707, −7.00209119703822747643041474916, −6.37474396967391076727199709168, −6.21098392912219554133165199815, −5.66279532712221641200800959758, −5.55197771532228809131311499033, −5.42351706544423124354609532665, −4.88701230192042489337729329011, −4.53314115514720800505450552414, −4.41309875019210982809589957407, −4.33151112005138653925475220774, −4.29051114786963006138814285027, −3.61586297913753360211912752738, −3.15102041899732652124873586147, −2.98898371408951049657578678796, −2.24814984826177286342936833796, −2.12405714639516977772720686862, −1.74369722639636817065349974674, −1.47934878581305244975120821724, −1.42292055874586782159086811533, −0.62892339417492159160111988290, −0.62522172422253447069246005895, −0.43318599030416082252825453761, 0.43318599030416082252825453761, 0.62522172422253447069246005895, 0.62892339417492159160111988290, 1.42292055874586782159086811533, 1.47934878581305244975120821724, 1.74369722639636817065349974674, 2.12405714639516977772720686862, 2.24814984826177286342936833796, 2.98898371408951049657578678796, 3.15102041899732652124873586147, 3.61586297913753360211912752738, 4.29051114786963006138814285027, 4.33151112005138653925475220774, 4.41309875019210982809589957407, 4.53314115514720800505450552414, 4.88701230192042489337729329011, 5.42351706544423124354609532665, 5.55197771532228809131311499033, 5.66279532712221641200800959758, 6.21098392912219554133165199815, 6.37474396967391076727199709168, 7.00209119703822747643041474916, 7.09348281082224404867007563707, 7.53850685072409387554957524605, 7.75591532803140889154237088565

Graph of the $Z$-function along the critical line