Properties

Degree $2$
Conductor $1476$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2.56·5-s − 0.858·7-s − 6.20·11-s + 1.41·13-s + 3.93·17-s + 3.82·19-s − 3.06·23-s + 1.58·25-s + 8.48·29-s + 1.13·31-s + 2.20·35-s + 8.49·37-s + 41-s + 5.34·43-s + 6.65·47-s − 6.26·49-s − 6.41·53-s + 15.9·55-s + 3.06·59-s + 7.41·61-s − 3.63·65-s + 1.79·67-s + 3.02·71-s + 0.632·73-s + 5.32·77-s − 14.3·79-s + 8.76·83-s + ⋯
L(s)  = 1  − 1.14·5-s − 0.324·7-s − 1.87·11-s + 0.392·13-s + 0.953·17-s + 0.877·19-s − 0.639·23-s + 0.317·25-s + 1.57·29-s + 0.203·31-s + 0.372·35-s + 1.39·37-s + 0.156·41-s + 0.815·43-s + 0.970·47-s − 0.894·49-s − 0.881·53-s + 2.14·55-s + 0.399·59-s + 0.949·61-s − 0.450·65-s + 0.219·67-s + 0.358·71-s + 0.0740·73-s + 0.607·77-s − 1.60·79-s + 0.961·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1476 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1476 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1476\)    =    \(2^{2} \cdot 3^{2} \cdot 41\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{1476} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1476,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.056357645\)
\(L(\frac12)\) \(\approx\) \(1.056357645\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + 2.56T + 5T^{2} \)
7 \( 1 + 0.858T + 7T^{2} \)
11 \( 1 + 6.20T + 11T^{2} \)
13 \( 1 - 1.41T + 13T^{2} \)
17 \( 1 - 3.93T + 17T^{2} \)
19 \( 1 - 3.82T + 19T^{2} \)
23 \( 1 + 3.06T + 23T^{2} \)
29 \( 1 - 8.48T + 29T^{2} \)
31 \( 1 - 1.13T + 31T^{2} \)
37 \( 1 - 8.49T + 37T^{2} \)
43 \( 1 - 5.34T + 43T^{2} \)
47 \( 1 - 6.65T + 47T^{2} \)
53 \( 1 + 6.41T + 53T^{2} \)
59 \( 1 - 3.06T + 59T^{2} \)
61 \( 1 - 7.41T + 61T^{2} \)
67 \( 1 - 1.79T + 67T^{2} \)
71 \( 1 - 3.02T + 71T^{2} \)
73 \( 1 - 0.632T + 73T^{2} \)
79 \( 1 + 14.3T + 79T^{2} \)
83 \( 1 - 8.76T + 83T^{2} \)
89 \( 1 - 7.89T + 89T^{2} \)
97 \( 1 - 9.86T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.651055243906483320699164348242, −8.399994372134517302297139205928, −7.87770635133846297792033567598, −7.39676046022599700928576925441, −6.17962162115333489588165430588, −5.32045741772197482307584499602, −4.41406001665294356594435897992, −3.38496671342815541604332311686, −2.61627192095924409811679959847, −0.71697305430408177965661911866, 0.71697305430408177965661911866, 2.61627192095924409811679959847, 3.38496671342815541604332311686, 4.41406001665294356594435897992, 5.32045741772197482307584499602, 6.17962162115333489588165430588, 7.39676046022599700928576925441, 7.87770635133846297792033567598, 8.399994372134517302297139205928, 9.651055243906483320699164348242

Graph of the $Z$-function along the critical line