Properties

Label 2-1470-35.9-c1-0-1
Degree $2$
Conductor $1470$
Sign $-0.986 + 0.165i$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (−1.89 − 1.18i)5-s − 0.999·6-s + 0.999i·8-s + (0.499 − 0.866i)9-s + (−1.05 − 1.97i)10-s + (1.52 + 2.64i)11-s + (−0.866 − 0.499i)12-s − 1.64i·13-s + (2.23 + 0.0743i)15-s + (−0.5 + 0.866i)16-s + (−2.51 + 1.45i)17-s + (0.866 − 0.499i)18-s + (−1.10 + 1.91i)19-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (−0.499 + 0.288i)3-s + (0.249 + 0.433i)4-s + (−0.848 − 0.528i)5-s − 0.408·6-s + 0.353i·8-s + (0.166 − 0.288i)9-s + (−0.333 − 0.623i)10-s + (0.460 + 0.797i)11-s + (−0.249 − 0.144i)12-s − 0.455i·13-s + (0.577 + 0.0191i)15-s + (−0.125 + 0.216i)16-s + (−0.610 + 0.352i)17-s + (0.204 − 0.117i)18-s + (−0.253 + 0.439i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 + 0.165i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.986 + 0.165i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-0.986 + 0.165i$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1470} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ -0.986 + 0.165i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4533525474\)
\(L(\frac12)\) \(\approx\) \(0.4533525474\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 - 0.5i)T \)
3 \( 1 + (0.866 - 0.5i)T \)
5 \( 1 + (1.89 + 1.18i)T \)
7 \( 1 \)
good11 \( 1 + (-1.52 - 2.64i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + 1.64iT - 13T^{2} \)
17 \( 1 + (2.51 - 1.45i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.10 - 1.91i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.55 + 0.894i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + 5.58T + 29T^{2} \)
31 \( 1 + (-0.472 - 0.818i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (9.27 + 5.35i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + 6.67T + 41T^{2} \)
43 \( 1 - 10.5iT - 43T^{2} \)
47 \( 1 + (9.85 + 5.68i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-5.01 + 2.89i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-2.98 - 5.17i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.222 + 0.386i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (1.09 - 0.632i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + 14.8T + 71T^{2} \)
73 \( 1 + (6.85 - 3.95i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-7.14 + 12.3i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 0.874iT - 83T^{2} \)
89 \( 1 + (8.75 - 15.1i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 10.4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00104719201345374500438643460, −8.974351828716470402182306931910, −8.262453204927963299886973055380, −7.36290732113010744102534687676, −6.67382234049933409811259693093, −5.67826780376436693646775835641, −4.86353083097071697148436039545, −4.15064966691526997839737070835, −3.41144280560273015726666264448, −1.75033838316297213184306141878, 0.15091842481130948664423961251, 1.78108590731354167439151311919, 3.07637959546214531328500299625, 3.90200651565162687404101293147, 4.78040813574388386305804600191, 5.77099645247086560602215864683, 6.70618833523044269840353725831, 7.11652808561517621945310789511, 8.260820708856733077509669140379, 9.050963804291348842074100847856

Graph of the $Z$-function along the critical line