Properties

Label 2-1470-35.27-c1-0-10
Degree $2$
Conductor $1470$
Sign $0.652 - 0.757i$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)2-s + (0.707 + 0.707i)3-s + 1.00i·4-s + (−1 − 2i)5-s − 1.00i·6-s + (0.707 − 0.707i)8-s + 1.00i·9-s + (−0.707 + 2.12i)10-s − 1.96·11-s + (−0.707 + 0.707i)12-s + (2.37 + 2.37i)13-s + (0.707 − 2.12i)15-s − 1.00·16-s + (−3.38 + 3.38i)17-s + (0.707 − 0.707i)18-s + 3.41·19-s + ⋯
L(s)  = 1  + (−0.499 − 0.499i)2-s + (0.408 + 0.408i)3-s + 0.500i·4-s + (−0.447 − 0.894i)5-s − 0.408i·6-s + (0.250 − 0.250i)8-s + 0.333i·9-s + (−0.223 + 0.670i)10-s − 0.592·11-s + (−0.204 + 0.204i)12-s + (0.659 + 0.659i)13-s + (0.182 − 0.547i)15-s − 0.250·16-s + (−0.821 + 0.821i)17-s + (0.166 − 0.166i)18-s + 0.783·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.652 - 0.757i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.652 - 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $0.652 - 0.757i$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1470} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ 0.652 - 0.757i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.047799784\)
\(L(\frac12)\) \(\approx\) \(1.047799784\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 + 0.707i)T \)
3 \( 1 + (-0.707 - 0.707i)T \)
5 \( 1 + (1 + 2i)T \)
7 \( 1 \)
good11 \( 1 + 1.96T + 11T^{2} \)
13 \( 1 + (-2.37 - 2.37i)T + 13iT^{2} \)
17 \( 1 + (3.38 - 3.38i)T - 17iT^{2} \)
19 \( 1 - 3.41T + 19T^{2} \)
23 \( 1 + (3 - 3i)T - 23iT^{2} \)
29 \( 1 + 4.22iT - 29T^{2} \)
31 \( 1 - 1.98iT - 31T^{2} \)
37 \( 1 + (-5.35 - 5.35i)T + 37iT^{2} \)
41 \( 1 - 11.5iT - 41T^{2} \)
43 \( 1 + (-7.81 + 7.81i)T - 43iT^{2} \)
47 \( 1 + (4.93 - 4.93i)T - 47iT^{2} \)
53 \( 1 + (-8.39 + 8.39i)T - 53iT^{2} \)
59 \( 1 - 4.19T + 59T^{2} \)
61 \( 1 - 3.92iT - 61T^{2} \)
67 \( 1 + (-2.36 - 2.36i)T + 67iT^{2} \)
71 \( 1 + 4.14T + 71T^{2} \)
73 \( 1 + (2.01 + 2.01i)T + 73iT^{2} \)
79 \( 1 - 11.5iT - 79T^{2} \)
83 \( 1 + (-10.9 - 10.9i)T + 83iT^{2} \)
89 \( 1 + 6.02T + 89T^{2} \)
97 \( 1 + (5.08 - 5.08i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.572410489596361516702541765441, −8.836641622920839526160304592113, −8.204906411762903760107791051026, −7.63811818249353316003470500550, −6.40111414957789815463729119910, −5.27489411001228893581725991540, −4.28591000365598626789938305462, −3.68830941287985854200574348595, −2.41700934935245982354471016542, −1.23097487908483310228645682340, 0.51430020925691631995300971195, 2.24533212342993507181855613445, 3.12059184006213621258750984585, 4.25385373404590702580405392364, 5.53564862795786289990259751556, 6.31720926979553833649614650759, 7.26389995562047485385046421771, 7.61729281976670070287227768623, 8.484030821967430812433850727600, 9.212788384947990817928066044841

Graph of the $Z$-function along the critical line