Properties

Label 8-1470e4-1.1-c1e4-0-11
Degree $8$
Conductor $4.669\times 10^{12}$
Sign $1$
Analytic cond. $18983.5$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·3-s + 4-s + 2·5-s − 4·6-s + 2·8-s + 9-s − 4·10-s − 4·11-s + 2·12-s + 4·15-s − 4·16-s − 2·18-s + 2·20-s + 8·22-s − 4·23-s + 4·24-s + 25-s − 2·27-s + 16·29-s − 8·30-s − 4·31-s + 2·32-s − 8·33-s + 36-s + 4·40-s + 24·41-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 1/2·4-s + 0.894·5-s − 1.63·6-s + 0.707·8-s + 1/3·9-s − 1.26·10-s − 1.20·11-s + 0.577·12-s + 1.03·15-s − 16-s − 0.471·18-s + 0.447·20-s + 1.70·22-s − 0.834·23-s + 0.816·24-s + 1/5·25-s − 0.384·27-s + 2.97·29-s − 1.46·30-s − 0.718·31-s + 0.353·32-s − 1.39·33-s + 1/6·36-s + 0.632·40-s + 3.74·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(18983.5\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.882239447\)
\(L(\frac12)\) \(\approx\) \(2.882239447\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
3$C_2$ \( ( 1 - T + T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7 \( 1 \)
good11$D_4\times C_2$ \( 1 + 4 T - 8 T^{2} + 8 T^{3} + 279 T^{4} + 8 p T^{5} - 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2^3$ \( 1 - 32 T^{2} + 735 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^3$ \( 1 - 30 T^{2} + 539 T^{4} - 30 p^{2} T^{6} + p^{4} T^{8} \)
23$C_4\times C_2$ \( 1 + 4 T - 26 T^{2} - 16 T^{3} + 867 T^{4} - 16 p T^{5} - 26 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 8 T + 56 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 4 T - 184 T^{3} - 1201 T^{4} - 184 p T^{5} + 4 p^{3} T^{7} + p^{4} T^{8} \)
37$C_2^3$ \( 1 - 72 T^{2} + 3815 T^{4} - 72 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 12 T + 110 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 12 T + 120 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 + 4 T - 32 T^{2} - 184 T^{3} - 657 T^{4} - 184 p T^{5} - 32 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 + 4 T + 34 T^{2} - 496 T^{3} - 3333 T^{4} - 496 p T^{5} + 34 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 + 12 T + 62 T^{2} - 432 T^{3} - 5253 T^{4} - 432 p T^{5} + 62 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 + 12 T + 18 T^{2} + 48 T^{3} + 3371 T^{4} + 48 p T^{5} + 18 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
67$D_4\times C_2$ \( 1 - 4 T - 24 T^{2} + 376 T^{3} - 3961 T^{4} + 376 p T^{5} - 24 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 16 T + 198 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 4 T - 102 T^{2} + 112 T^{3} + 7427 T^{4} + 112 p T^{5} - 102 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
79$C_2^3$ \( 1 - 30 T^{2} - 5341 T^{4} - 30 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 16 T + 222 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 - 4 T - 94 T^{2} + 272 T^{3} + 2755 T^{4} + 272 p T^{5} - 94 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 + 12 T + 222 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.88467179314056365041275759683, −6.47493504717400522196668687869, −6.36220492138492771204754876556, −6.24379037902097920300892982671, −6.04838804013094700368736240085, −5.72044241218869125995973502928, −5.45568883557095004276687322825, −5.36919440661996387875593296889, −4.97797299996805279536919651508, −4.76387889411476678885022073650, −4.54036799671397139120768088094, −4.33942250385754095274347934415, −3.96594148434104622741039151844, −3.94977606435075788689933479281, −3.43270072598801718893289850816, −3.25413934576986458118547600675, −2.79852408529432256747290262419, −2.67844886011631871232655950755, −2.35356893214594785948174154581, −2.22719185993947789928075511618, −2.16471505500199443364508523404, −1.39027138690386347039920585880, −1.24186694914375611279756414302, −0.69896090537668797638094349520, −0.52611030048546418460169902068, 0.52611030048546418460169902068, 0.69896090537668797638094349520, 1.24186694914375611279756414302, 1.39027138690386347039920585880, 2.16471505500199443364508523404, 2.22719185993947789928075511618, 2.35356893214594785948174154581, 2.67844886011631871232655950755, 2.79852408529432256747290262419, 3.25413934576986458118547600675, 3.43270072598801718893289850816, 3.94977606435075788689933479281, 3.96594148434104622741039151844, 4.33942250385754095274347934415, 4.54036799671397139120768088094, 4.76387889411476678885022073650, 4.97797299996805279536919651508, 5.36919440661996387875593296889, 5.45568883557095004276687322825, 5.72044241218869125995973502928, 6.04838804013094700368736240085, 6.24379037902097920300892982671, 6.36220492138492771204754876556, 6.47493504717400522196668687869, 6.88467179314056365041275759683

Graph of the $Z$-function along the critical line