Properties

Degree $2$
Conductor $1470$
Sign $0.266 + 0.963i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s + 0.999·6-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (0.499 − 0.866i)10-s + (0.499 + 0.866i)12-s − 2·13-s − 0.999·15-s + (−0.5 − 0.866i)16-s + (3 − 5.19i)17-s + (0.499 − 0.866i)18-s + (−2 − 3.46i)19-s + 0.999·20-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.223 − 0.387i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (0.158 − 0.273i)10-s + (0.144 + 0.249i)12-s − 0.554·13-s − 0.258·15-s + (−0.125 − 0.216i)16-s + (0.727 − 1.26i)17-s + (0.117 − 0.204i)18-s + (−0.458 − 0.794i)19-s + 0.223·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $0.266 + 0.963i$
Motivic weight: \(1\)
Character: $\chi_{1470} (361, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ 0.266 + 0.963i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.516691295\)
\(L(\frac12)\) \(\approx\) \(1.516691295\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (-0.5 + 0.866i)T \)
5 \( 1 + (0.5 + 0.866i)T \)
7 \( 1 \)
good11 \( 1 + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + (-3 + 5.19i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2 + 3.46i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-3 + 5.19i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (5 + 8.66i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + (-1 + 1.73i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 + (-9 - 15.5i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.257930923204582788890108078237, −8.345863822808380456985608810940, −7.58932423213480981116045275959, −7.08461696689027482813478522335, −6.08720726301409836765464791644, −5.19853337791433568670991538822, −4.40953861238664577893831957836, −3.28978818186339699449988687586, −2.24408576449534734034468652085, −0.51118839732914461250351631195, 1.59253655493677423458052276415, 2.77959941454233904484367971001, 3.65863340018501041038093033770, 4.35974068274400443492239123835, 5.42834896561593495817217369094, 6.20537445365979675710518545164, 7.34164395307515912174007795081, 8.202916362463630845185988018292, 8.957708445990459306798124837534, 9.999455828235689195457185090904

Graph of the $Z$-function along the critical line